Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemists Devise New Way to Prepare Molecules for Drug Testing

Published: Monday, August 19, 2013
Last Updated: Monday, August 19, 2013
Bookmark and Share
Metal-catalyzed cross-couplings of carbon bonds could enable creation of libraries of drug candidates to accelerate drug discovery.

James Bond had his reasons for ordering his martinis “shaken, not stirred.” Similarly, drug manufacturers need to make sure the molecules in a new drug are arranged in an exact manner, lest there be dire consequences. Specifically, they need to be wary of enantiomers, mirror-image molecules composed of the same atoms, but arranged differently.

“One mirror image could be therapeutic while another could be poisonous,” said Dr. Mark R. Biscoe, assistant professor of chemistry at The City College of New York. The classic case is thalidomide, a drug marketed in the 1950s and 1960s to treat morning sickness, which resulted in serious birth defects.

Professor Biscoe led a team of researchers at CCNY that developed a new method for preparing libraries of single-enantiomer molecules for therapeutic and toxicity studies that is faster and potentially less costly than methods now used in the pharmaceutical industry. Their findings were reported in Nature Chemistry.

Currently, drug developers typically rely on a chiral resolution process whereby compounds with roughly equal parts of the two enantiomers are separated into the individual enantiomers. Bioenzymatic processes can also be employed to generate single-enantiomer molecules. These strategies are wasteful and costly, Professor Biscoe explained.

He and colleagues found that a metal such as palladium could be employed to achieve a cross-coupling reaction with a single-enantiomer molecule without impacting the integrity of the mirror image formed in the product. By doing so, they could isolate one mirror image for evaluation as a drug candidate.

“By using a single-enantiomer partner in a cross-coupling reaction, we can rapidly generate a diverse library of biologically active molecules for use in drug screening,” he said.

The research was funded by the National Institutes of Health, City College, the Alfred P. Sloan Foundation and PSC-CUNY, with additional support from the National Science Foundation and the American Chemical Society Petroleum Research Fund.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Unique Model for Studying ALS
Unique mouse model will allow researchers to better study the genetic origins and potential treatments of ALS.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!