Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Develop Rapid, Cost-Effective Early Detection Method for Organ Transplant Injury

Published: Thursday, August 29, 2013
Last Updated: Thursday, August 29, 2013
Bookmark and Share
Chronix Biomedical and transplant expert Prof. Oellerich use Droplet Digital™ PCR to quantify early rejection biomarker.

A recently reported blood test for the early detection of organ transplant injury could enable more timely therapeutic intervention in transplant patients and thus help to avoid long-term damage. As described by scientists at the University Medical Center Göttingen and Chronix Biomedical, a molecular diagnostics company, the new method uses Bio-Rad Laboratories’ Droplet Digital PCR (ddPCR™) technology to overcome the obstacles of earlier tests, which were both time-consuming and costly. The method was presented at the American Association of Clinical Chemistry (AACC) 2013 annual meeting and has been accepted for publication inClinical Chemistry.

Approximately 28,000 organ transplantations (known as grafts) are performed each year in the U.S., with another 100,000 patients on waiting lists. However, transplant patients are often subject to organ rejection: acute rejection of liver transplants within three years is nearly 22 percent, while heart and lung rejection is close to 50 percent. In addition, nearly half of all of kidney transplants fail within ten years.

Graft-derived cell-free DNA (GcfDNA) in the circulation of transplant recipients is a potential rejection biomarker. But previous attempts to determine GcfDNA, which require parallel sequencing of donor and recipient DNA, are expensive and require a long turnaround and use of donor DNA. University Medical Center Göttingen and Chronix Biomedical researchers sought to develop a new method in an attempt to address these drawbacks.
 
Using ddPCR for a Fast, Cost-Effective Test

The researchers applied Bio-Rad’s ddPCR technology to quantify graft-derived cfDNA in recent liver transplant patients and in stable patients who had undergone a transplant procedure more than six months earlier. ddPCR technology allowed them to develop a cost-effective and fast laboratory test that detects cfDNA being released into the blood stream by dying cells from the transplanted organ.

“GcfDNA from dying graft cells is the most direct and sensitive indicator of organ rejection and we needed an instrument that could measure it,” said Chronix Biomedical’s chief technology officer and the study’s senior author, Ekkehard Schütz, MD, PhD. “ddPCR added an additional level of reliability and precision to traditional PCR.”
Sequencing methods typically require batch sampling, but by using ddPCR, researchers are able to run single samples. Additionally, this method is reducing test time from three days or more to one day, and reducing costs by 90 percent. The study authors were able to address the need for donor DNA by preselecting SNPs that ensure enough heterogeneity between donor and recipient. The new blood test can also deliver results up to several earlier than the conventional aspartate aminotransferase (AST) and bilirubin tests for liver transplantation rejection, with the potential for an immediate positive impact on patient care.

“We will now be able to detect subclinical rejection and early intervention may allow us to avoid a full-blown rejection,” said Michael Oellerich, MD, FACP, FRCPath and Lower Saxony distinguished professor of clinical chemistry at the University Medical Center Göttingen and the study’s principal investigator. “This test may be useful to personalize immunosuppression and to improve long-term outcomes.”

“Detecting nonhost cfDNA is the third example of the commercial potential of cfDNA diagnostics. Researchers will now be able to extend the applications from fetal cfDNA in maternal blood and personalized biomarkers for minimal residual disease in cancer to solid organ transplantation,” said Howard Urnovitz, PhD, Chronix Biomedical’s chief executive officer.

“We are looking forward to the improvements in precision medicine we can offer with ddPCR and this example in transplantation highlights the diagnostic value for the technology,” said Paula Stonemetz, director diagnostic business development for Bio-Rad Laboratories’ Digital Biology Center.

The study’s researchers were awarded a National Academy of Clinical Biochemistry (NACB) Distinguished Abstract Award at the 2013 AACC annual conference. The results are part of a larger planned study to determine if cfDNA is the earliest indication of a transplant organ rejection.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Biomarker Could Reveal Alzheimer's Disease Years Before Onset
A new study has reported the identification of what may be the earliest known biomarker associated with the risk of developing Alzheimer's disease (AD).
Wednesday, August 14, 2013
Bio-Rad and Myriad RBM Partner to Develop Immunoassay Kits
Partnership to commercialize multiplex biomarker kits for life science research.
Wednesday, August 01, 2012
Bio-Rad Introduces new Pro-Human Diabetes Assay Panel
The Company has launched new Bio-Plex Pro™ Human Diabetes Assay Panels for its Bio-Plex® suspension array system.
Tuesday, June 24, 2008
Bio-Rad Announces Web Seminar Series
Web seminar series area includes Spectroscopy, Chromatography, ADME/Tox and Metabolomics.
Friday, May 05, 2006
Scientific News
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Antarctic Sponge Extract Kills MRSA
New findings may provide opportunity for developing new drugs to fight dangerous bacteria currently highly resistant to treatment.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
Using Gene-editing Technology for Faster, Cheaper Antiviral Drug Development
UCLA scientists are working to develop special screening libraries based on a gene-editing technology called CRISPR.
Can Gender Play A Role In Determining Cancer Treatment Choices?
MD Anderson study reveals “sex-biased” gene signatures in review of 13 cancer types.
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!