Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemists Find New Way to Put the Brakes on Cancer

Published: Thursday, September 12, 2013
Last Updated: Thursday, September 12, 2013
Bookmark and Share
US scientists are looking for the new targets and next generation of therapeutics to stop cancer nationwide.

A new platform for drug discovery has been developed through a collaborative effort linking chemists at NYU and pharmacologists at USC.

In a study appearing in Proceedings of the National Academy of Sciences, the research groups of Paramjit Arora, a professor in NYU’s Department of Chemistry, and Bogdan Olenyuk from the USC School of Pharmacy have developed a synthetic molecule, “protein domain mimetic,” which targets the interaction between two proteins, called transcription factor-coactivator complex at the point where intracellular signaling cascade converges resulting in an up-regulation of genes that promote tumor progression.

This approach presents a new frontier in cancer research and is different from the typical search for small molecules that target cellular kinases.

The synthetic molecule that the paper describes -- HBS 1 -- is based on chemically stabilized secondary structure of a protein that is mimicking specific fold, called α-helix ,- and shows outstanding potential for suppression of tumor growth. This compound was specifically designed to interrupt the type of molecular conversation within cell (called cell signaling) that promotes growth of cancer cells. Creation of HBS 1 required a method for locking correct helical shapes in synthetic strings of amino acids – a method previously developed at NYU.

The studies conducted at NYU and USC show that the molecule disrupted the cancer cell signaling network and reached the correct target in the cell to provide a rapid blockade of tumor growth. Importantly, the compounds did not show any signs of toxicity or negative impact in the test host.

While the in vivo experiments in this research were conducted using renal carcinoma cells, the principles of this design are applicable to many human conditions, including other cancers, cardiovascular diseases, and diabetic complications. The general concept of the study, the interruption of the connection between genes as they conspire to promote cancer growth, is general and applicable to the protein cell to protein cell “conversations” implicated in a host of human diseases.

Next, the NYU and USC teams will initiate the translational aspects of the project. The compounds will be tested in advanced tumor models, with the aim to ultimately take the compound into clinical trials. In addition to the lead authors on the paper, contributors include Ramin Dubey and Hanah Mesallati from USC and Brooke Bullock Lao, Laura K. Henchey, and Nathaniel J. Traaseth from NYU.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Find “Decoder Ring” Powers in microRNA
MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York Univ. chemists has found.
Wednesday, May 27, 2015
Scientific News
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Microalgae Make a Splash in the UK Cosmeceutical Market
Scottish innovators have discovered an anti-viral and anti-inflammatory carbohydrate in microscopic algae (microalgae) which has huge potential to change the cosmetics market.
Mechanism of Tumor Suppressing Gene Uncovered
The most commonly mutated gene in cancer,p53, works to prevent tumor formation by keeping mobile elements in check that otherwise lead to genomic instability, UT Southwestern Medical Center researchers have found.
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Useful Colon Cancer Biomarker Discovered
Biomarker is detectable with simple, inexpensive test.
A New Type of Anticancer Agent
Success in the development of a ?-tubulin specific inhibitor.
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Versatile New Molecule-Building Technique
Chemists at The Scripps Research Institute (TSRI) have devised a new and widely applicable technique for building potential drug molecules and other organic compounds.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!