Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Biologists Find New Method for Discovering Antibiotics

Published: Tuesday, September 17, 2013
Last Updated: Tuesday, September 17, 2013
Bookmark and Share
Biologists have developed a revolutionary new method for identifying and characterizing antibiotics.

The researchers, who published their findings in this week’s early online edition of the journal Proceedings of the National Academy of Sciences, made their discovery by developing a way to perform the equivalent of an autopsy on bacterial cells.

“This will provide a powerful new tool for identifying compounds that kill bacteria and determining how they work,” said Joseph Pogliano, a professor of biology at UC San Diego who headed the research team. “Some bacteria have evolved resistance to every known class of antibiotic and, when these multi-drug resistant bacteria cause an infection, they are nearly impossible to treat. There is an urgent need for new antibiotics capable of treating infections caused by antibiotic resistant bacteria.”

The Centers for Disease Control and Prevention issued an alarming report in March that antibiotic-resistant strains of Carbapenem-Resistant Enterobacteriaceae, or CRE, had been found to cause infections in patients in nearly 200 hospitals in the United States alone. Because no antibiotics on the market are effective at treating these infections, about one-half of patients die from CRE infections. These outbreaks are difficult to contain, and in a 2011 outbreak of Klebsiella pneumonia at the U.S. National Institutes of Health Clinical Center, the bacteria spread despite strict infection control procedures and was detected in drains and medical devices that had been subject to standard decontamination protocols.

“We are finally running out of the miracle drugs,” said Pogliano, who detailed the history: The antibiotic penicillin was first discovered in the late 1920s, and received widespread clinical use in the 1940s. However, bacteria quickly evolved resistance to penicillin, so new and better versions were developed. Since that time, a continuous race has been fought to identify new antibiotics in order to stay one step ahead of the evolving resistance. In the 2011 outbreak of Klebsiella, the bacteria evolved resistance even to colistin, a drug of last resort because of its severe side effects.

Over the last 25 years, the number of new antibiotics entering the clinic has drastically declined. At the same time, bacteria have continued to evolve resistance to all of the currently available drugs, creating the current critical situation. One of the main problems in identifying new antibiotics and bringing them to market is a lack of understanding how the molecules work.

“It’s easy to identify thousands of molecules capable of killing bacteria,” explained Kit Pogliano, a professor of biology and a co-author of the paper. “The hard part is picking out the winners from the losers, and choosing molecules that are the best candidates for drug development. One key piece of information needed for this choice is knowledge of how the drug works, but this is traditionally difficult information to obtain, usually requiring months of intensive work. We’ve applied 21st century methods that within just two hours provide this information, allowing more rapid prioritization of new molecules. This will open up the discovery pipeline, allowing us to more rapidly identify new molecules with potential to enter the clinic for treatment of multi-drug-resistant pathogens.”

One key to this new approach was the combination of microscopy and quantitative biology tools. “We had to develop all of the cell biology and quantitative biology methods for generating the data ourselves and that required a lot of work, but now that we have the method working, it is very exciting,” said Poochit Nonejuie, a graduate student in the Division of Biological Sciences and another co-author. “My chemistry colleagues can give me a new molecule in the morning, and by the afternoon I can tell them the likely cellular pathways that they target. It’s mind blowing how powerful the technology is.”

The UC San Diego biologists say their new method is not only game changing, but promises to revolutionize how drug discovery teams guide their studies.  With previous methods, understanding how an antibiotic works requires many different biochemical assays to be performed, which requires a lot of time and relatively large quantities of the compound, which is almost always in short supply when it is first discovered.

“Our new method represents the first time that a single test can be performed and identify the likely mechanism of action for a new compound,” said Joseph Pogliano. He noted that postdoctoral fellow Anne Lamsa has miniaturized the method so that it requires just a few nanograms of each drug candidate, conserving molecules that are often available only in tiny quantities.

“It’s also faster and can be easily adapted for high-throughput drug discovery efforts,” he added. “This method will allow us to more quickly identify chemicals that kill bacteria, which will accelerate the development of new medicines. Understanding how antibiotics work is key to understanding how they evolve resistance.”

Pogliano said his research team, which also included Mike Burkart, a chemistry and biochemistry professor, will be continuing its investigations on antibiotics. “We are now using this method to look for new molecules active against antibiotic resistant bacteria,” he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Potential Drug Discovered for Severe Form of Epilepsy
UCSF study found effectiveness of antihistamine on zebrafish bred to mimic disease.
Thursday, September 05, 2013
Scientific News
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!