Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Stem Cells: How to Predict Their Fate

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Technique has potential for regenerative medicine and drug development.

University of Toronto researchers have developed a method that can rapidly screen human stem cells and better control what they will become - a technology that could be used for regenerative medicine and drug development.

The findings are published in this week's issue of the journal Nature Methods.

“The work allows for a better understanding of how to turn stem cells into clinically useful cell types more efficiently,” said Emanuel Nazareth, a PhD student at U of T's Institute of Biomaterials & Biomedical Engineering (IBBME). The research comes out of the lab of Professor Peter Zandstra, Canada Research Chair in Bioengineering at U of T.

The researchers used human pluripotent stem cells (hPSC), cells which have the potential to differentiate and eventually become any type of cell in the body. But the key to getting stem cells to grow into specific types of cells, such as skin cells or heart tissue, is to grow them in the right environment in culture, and there have been challenges in getting those environments (which vary for different types of stem cells) just right, Nazareth said.

The researchers developed a high-throughput platform, which uses robotics and automation to test many compounds or drugs at once, with controllable environments to screen hPSCs in. With it, they can control the size of the stem cell colony, the density of cells, and other parameters in order to better study characteristics of the cells as they differentiate or turn into other cell types. Studies were done using stem cells in micro-environments optimized for screening and observing how they behaved when chemical changes were introduced .

Researchers found that two specific proteins within stem cells, Oct4 and Sox2, can be used to track the four major early cell fate types that stem cells can turn into, allowing four screens to be performed at once.

“One of the most frustrating challenges is that we have different research protocols for different cell types. But as it turns out, very often those protocols don’t work across many different cell lines,” Nazareth said.

The work also provides a way to study differences across cell lines that can be used to predict certain genetic information, such as abnormal chromosomes. What’s more, these predictions can be done in a fraction of the time compared to other existing techniques, and for a substantially lower cost compared to other testing and screening methods.

“We anticipate this technology will underpin new strategies to identify cell fate control molecules, or even drugs, for a number of different stem cell types,” Zandstra said.

As a drug screening technology "it’s a dramatic improvement over its predecessors,” said Nazareth. He notes that in some cases, the new technology can drop testing time from up to a month to a mere two days.

Professor Zandstra was awarded the 2013 Till & McCulloch Award in recognition of this contribution to global stem cell research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Disease-Related Proteins Work; a "Truly Momentous" Discovery
Researchers are helping demystify an important class of proteins associated with disease.
Tuesday, July 09, 2013
University of Toronto Breakthrough Allows Fast, Reliable Identification of Pathogens
Researchers have created an electronic chip that can analyze blood and other clinical samples for infectious bacteria with record-breaking speed.
Friday, June 21, 2013
Scientific News
Four New Genetic Disorders Identified
Sharing of genetic data empowers discovery of new disorders in children.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos