Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Technique Diagnoses Cancer from Bodily Fluids

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
Harvard researchers contributed machine learning techniques to improve UCLA diagnostic tool.

A team of researchers from Harvard University and the University of California, Los Angeles, have demonstrated a technique that, by measuring the physical properties of individual cells in body fluids, can diagnose cancer with a high degree of accuracy.

The technique, which uses a deformability cytometer to analyze individual cells, could reduce the need for more cumbersome diagnostic procedures and the associated costs, while improving accuracy over current methods. The initial clinical study, which analyzed pleural fluid samples from more than 100 patients, was published in the current issue of the peer-reviewed journal Science Translational Medicine.

Pleural fluid, a natural lubricant of the lungs as they expand and contract during breathing, is normally present in spaces surrounding the lungs. Medical conditions such as pneumonia, congestive heart failure, and cancer can cause an abnormally large buildup of the fluid, which is called a pleural effusion.

When cytopathologists screen for cancer in pleural effusions, they perform a visual analysis of prepared cells extracted from the fluid. Preparing cells for this analysis can involve complicated and time-consuming dyeing or molecular labeling, and the tests often do not definitively determine the presence of tumor cells. As a result, additional costly tests often are required.

The method used to assess the cells in the UCLA–Harvard study, developed previously by the UCLA researchers, requires little sample preparation, relying instead on the imaging of cells as they flow through microscale fluid conduits.

Imagine squeezing two balloons, one filled with water and one filled with honey. The balloons would feel different and would deform differently in your grip. The researchers used this principle on the cellular level by using a fluid grip to "squeeze" individual cells that are 10,000 times smaller than balloons—a technique called "deformability cytometry." The extent of a cell’s compression can provide insights about the cell's makeup or structure, such as the elasticity of its membrane or the resistance to flow of the DNA or proteins inside it. Cancer cells have a different architecture and are softer than healthy cells; as a result, they "deform" differently.

Using deformability cytometry, researchers can analyze more than 1,000 cells per second as they are suspended in a flowing fluid, providing significantly more detail on the variations within each patient's sample than could be detected using previous physical analysis techniques. Skillfully manipulating this large amount of cellular data, coauthors Ryan Adams, assistant professor of computer science at the Harvard School of Engineering and Applied Sciences, and Harvard undergraduate Yo Sup (Joseph) Moon connected how the distribution of individual cells’ properties correlate with a cancer diagnosis.

The researchers also noted that the more detailed information they obtained improved the sensitivity of the test: Some patient samples that were not identified as cancerous via traditional methods were found to be so through deformability cytometry. These results were verified six months later.

"Building off of these results, we are starting studies with many more patients to determine if this could be a cost-effective diagnostic tool and provide even more detailed information about cancer origin," said Dino Di Carlo, associate professor of bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science and a co-principal investigator on the research. "It could help to reduce laboratory workload and accelerate diagnosis, as well as offer doctors a new way to improve clinical decision making."

Jianyu Rao, professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA and the other co-principal investigator on the research, said the technique could potentially be used in a number of clinical settings to help manage cancer patients.

"First, it may increase diagnostic accuracy for the detection of cancer cells in body fluid samples," Rao said. "Second, it may provide a method of initial screening for cancer in body fluid samples in places with limited resources or a lack of experienced cytologists. Third, it may provide a test to determine the drug sensitivity of cancer cells."

Rao added that additional large-scale clinical studies are needed to further validate this technique for each of those applications.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
Thursday, October 01, 2015
Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
Monday, July 27, 2015
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
Tuesday, June 23, 2015
Beyond Average
Researchers have created new platforms to genetically barcode tens of thousands of cells at a time allowing unprecedented detail to be uncovered when studying whole tissue samples.
Tuesday, May 26, 2015
One Molecule at a Time
The ability to study single molecules provides tangible targets for personalised medicine.
Monday, May 18, 2015
Malaria in 3-D
Advanced imaging aids study of cell movement.
Tuesday, November 26, 2013
A Marker for Breast Cancer
Research says it soon may be possible to gauge individual risk for disease, and eventually to treat it.
Tuesday, August 13, 2013
Harvard Announces $50 Million Gift from the Blavatnik Family Foundation
Blavatnik Biomedical Accelerator will be a catalyst to transform basic scientific discoveries into new therapies and cures.
Wednesday, May 01, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos