Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Novel Cancer Cell DNA Damage Repair Mechanism

Published: Monday, December 23, 2013
Last Updated: Monday, December 23, 2013
Bookmark and Share
Findings result from application of the cell microarray screening method developed at VTT.

Cancer cells have an exceptional ability to repair damage to their DNA caused during uncontrolled cell division. Scientists have now unveiled a novel piece of the puzzle of cancer cell DNA repair mechanisms that explain the mechanistic changes in the genetic code of cancer cells.

Research with a material impact on cancer drug development was published in Science magazine on 5 December 2013.

The new findings explain partially why cancer cells, unlike normal cells, fail to die as a result of DNA damaging insults, and how this mechanism causes new genetic mutations in cancer cells. This new information directly benefits cancer research.

Now that scientists understand the repair mechanism, they are better equipped to develop drug therapies that specifically target cancerous cells.

The discovered DNA repair mechanism has previously not been described in human or mammalian cells. Cancer cells use the mechanism to repair DNA damage resulting from uncontrolled DNA replication forced by activated oncogenes.

The genes that participate in the DNA repair mechanism were discovered by Juha Rantala, Senior Scientist at VTT, and Thanos Halazonetis, Coordinator of the EU-funded GENICA (Genomic instability in cancer and pre-cancer) project, with the cell microchip screening method developed by Rantala in 2010. Based on gene silencing, the method allows a single microchip to screen the functions of tens of thousands of genes simultaneously.

This finding was preceded by years of research cooperation begun by Juha Rantala, Senior Scientist, and Professor Olli Kallioniemi (currently Director of the Finnish Institute of Molecular Medicine) from VTT and Professor Thanos Halazonetis (the University of Geneva). Thomas Helleday's research team at the Karolinska Institutet also participated in the research published in Science magazine.

The research was part of the EU's GENICA project aimed at discovering why the DNA damage sustained by cancer cells in the early stages of the disease fails to result in the programmed cell death associated with normal cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

European Research Project Aims at Early Diagnosis of Memory Disorders
800 patients to participate in testing new diagnostic procedures.
Thursday, March 20, 2014
VTT and GE Healthcare Developing Novel Biomarkers to Predict Alzheimer’s Disease
VTT and University of Eastern Finland scientists have discovered a serum biochemical signature.
Wednesday, June 27, 2012
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
New Method Opens Door to Development of Many New Medicines
Findings from TSRI reveal human proteins are better drug targets than previously thought.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
A New Approach to Chemical Synthesis
Communesins, originally found in fungus, could hold potential as cancer drugs.
Angina Drug Could Inform A New Strategy To Fight Cryptococcosis
A drug, more commonly used in the treatment of angina, could be the focus of a new strategy in fighting the fatal fungal infection cryptococcosis.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!