Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Observing Behavior of Single Molecules in Real Time

Published: Monday, March 17, 2014
Last Updated: Monday, March 17, 2014
Bookmark and Share
New technique developed by Stanford scientists allows observation of single molecules of protein or DNA as they bind with other molecules.

Nearly every biological or chemical reaction that makes life possible involves single molecules interacting in the watery solution that sloshes in and around cells.

Now, a Stanford chemistry professor and his graduate student have developed a technique for observing these processes as they happen in real time.

W.E. Moerner, a professor of chemistry, specializes in single molecule fluorescence, a field that involves studying how biomolecules – such as DNA and enzymes – work in cells to carry out the processes that are critical to life. The new advance describes how Moerner and his graduate student, Quan Wang, modified an ABEL (Anti-Brownian ELectrokinetic) trap, a machine invented in Moerner's lab that uses electric fields to manipulate individual small molecules from the light they emit, to isolate a single strand of DNA and observe how it binds to other DNA, in aqueous solution.

The work is detailed in the journal Nature Methods.

Getting this process started takes a little bit of luck, Wang said, as they must wait until a single molecule happens to be in the vicinity of the trap. This all happens at an incredibly tiny scale. The trap covers about a square centimeter, but the molecules are just 1 nanometer long. (For perspective, that's trapping a single grain of pollen on a football field, and then, without ever touching it, studying its behavior and characteristics.)

Once a lone molecule has entered the trap, its motion comes under continuous surveillance. Although the molecule doesn't want to sit still, every time it attempts to escape, the ABEL trap automatically applies electric fields to push it back.

Using physical analysis and computational tricks from machine learning, Wang developed an algorithm to convert the observed single-molecule motions inside the trap into information about the molecule's size and electric charge. From this, the researchers can determine whether the target molecule has interacted with another molecule.

In the case of DNA, if it begins to hybridize – that is, if it begins to bond to a complementary strand of DNA – the readings from the trap will show that the trapped DNA has an increase in both size and charge. When the process reverses a few instants later – that is, when the DNA melts and its complementary strand falls off – the trapped molecule's size and charge change back correspondingly.

"It is really quite amazing to be able to trap a single short piece of single-stranded DNA, to watch it for many seconds and directly observe a partner strand bind and unbind," Moerner said. "This is really an essential process."

The researchers conducted similar tests using proteins, and Wang said that the technology in its current state can easily be applied to many different types of molecules to study other binding processes.

"We've done the proof of concept for the method, and soon we want to apply it to two very specific problems and get some science out of it," said Wang, who is a graduate student in electrical engineering.

The first involves drug design. Drugs target diseases by binding to receptor molecules on cells, and the drug's effectiveness often depends on how well and for how long it binds to its receptor. By gauging the size and total charge of the molecules as they form a complex, the trap can directly measure how long it takes for the drug to find its receptor and how long the complex stays together. This information could guide scientists toward designing drugs that better match their target receptor.

Another application is to study the role protein aggregation plays in various diseases. As people age, proteins can become "sticky" and accumulate, a hallmark of several diseases, including Huntington's. The trap provides a direct way to study the size distribution of these proteins and how they aggregate; understanding this effect could lead to treatments that inhibit it.

Other students and postdoctoral scholars in Moerner's group are working to make the trap respond even more quickly, to perform more optimally in other situations, or to study different properties of single molecules. Moerner said that the interdisciplinary makeup of his group (including him; he holds a degree in electrical engineering as well as in chemistry) is critical for understanding all the different facets of this work, and then for smart implementation of it.

"We use light to probe molecules – that's physics and chemistry," Moerner said. "And we apply it to biology and biomedical systems. But at the core is precise measurement, extracting as much information as possible from a single object, and that can be done with concepts from electrical engineering.

"It's a natural thing at Stanford for students in one department to do thesis research in another. It's one of the wonderful aspects at Stanford, and it can lead to wonderful work such as this."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Drug Prevents Type 1 Diabetes In Mice
A compound that blocks the synthesis of hyaluronan, a substance generally found in in all body tissue, protected mice from getting Type 1 diabetes. The compound is already approved in Europe and Asia for the treatment of gallbladder disease.
Wednesday, September 16, 2015
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Thursday, July 30, 2015
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Monday, July 27, 2015
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Monday, July 27, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos