Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Validation of Drug Toxicity Prediction using DiscoveRx Model

Published: Tuesday, May 20, 2014
Last Updated: Tuesday, May 20, 2014
Bookmark and Share
BioMAP® Systems was shown to identify important safety aspects of drugs and chemicals more efficiently and accurately than can be achieved by animal testing.

Data from BioMAP Systems analysis of 776 environmental chemicals, including reference pharmaceuticals and failed drugs, on their ability to disrupt physiologically important human biological pathways were published this week in Nature Biotechnology. The results show that this in vitro approach can reproducibly identify potential toxicities and off-target drug effects, as well as pinpoint cellular mechanisms and specifically affected biomarker endpoints underlying specific types of adverse reactions in humans. DiscoveRx Corporation’s BioSeek division conducted the analysis in collaboration with scientists from the U.S. Food and Drug Administration, National Institutes of Health and U.S. Environmental Protection Agency as part of the EPA ToxCast Program.

Assessing the safety aspects of drugs, consumer products and environmental chemicals has been historically undertaken through animal testing. However, the vast number of chemicals needing such toxicological assessment  and the fact that results in animals often do not translate well to results in humans require the development of alternative, faster, more accurate and humane testing approaches.

“This publication examines an unprecedentedly large data set in terms of number of chemicals, chemical diversity and types of assays screened phenotypically in BioMAP primary human cell models of tissue biology and disease,” said Ellen L. Berg, Ph.D., Scientific Director and General Manager of DiscoveRx’s BioSeek division and an author of the publication.  “In contrast to screening approaches aimed at understanding the actions of a single agent at the molecular and mechanistic level, this method harvests the collective knowledge embedded in reference chemicals with respect to their molecular targets, mechanisms of action, and animal and human toxicity and applies it to characterizing the biological activity of new chemicals or medicines.

“Our results show such systems to be a highly useful and reproducible tool for predictive toxicology that can identify potential chemical targets, toxicological liabilities and molecular mechanisms that elucidate specific adverse outcome pathways for drugs and other chemicals,” Dr. Berg continued. “Even using a limited set of primary human cell systems, we were able to recognize consistent patterns of activity that were closely correlated with diverse drug actions and toxicities. New chemicals falling into profile clusters with known activities suggest specific potential toxicities for more careful evaluation, greatly increasing the efficiency of toxicity testing by focusing resources for follow-up testing on the bioactivities of highest concern.”

For example, drugs and chemicals, including selective estrogen receptor modulators, tamoxifen and raloxifene, that are associated with thrombosis-related side effects, like deep vein thrombosis (DVT), were found to preferentially increase the levels of tissue factor in BioMAP models of vascular inflammation.  Thus, the use of these models for screening earlier in the drug discovery process may help identify new medicines with reduced potential for this debilitating side effect.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DiscoveRx Corporation Continues to Innovate with Solutions for Epigenetic Drug Discovery Programs
The company announced availability of platform for studying Bromodomains, an emerging class of epigenetic targets.
Monday, February 06, 2012
DiscoveRx Expands its GPCR Technology Portfolio to Include Advanced Technologies
Introduces two additional GPCR platforms to facilitate counterscreening, lead optimization and SAR evaluation of compounds.
Friday, April 09, 2010
Scientific News
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Microalgae Make a Splash in the UK Cosmeceutical Market
Scottish innovators have discovered an anti-viral and anti-inflammatory carbohydrate in microscopic algae (microalgae) which has huge potential to change the cosmetics market.
Mechanism of Tumor Suppressing Gene Uncovered
The most commonly mutated gene in cancer,p53, works to prevent tumor formation by keeping mobile elements in check that otherwise lead to genomic instability, UT Southwestern Medical Center researchers have found.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!