Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Validation of Drug Toxicity Prediction using DiscoveRx Model

Published: Tuesday, May 20, 2014
Last Updated: Tuesday, May 20, 2014
Bookmark and Share
BioMAP® Systems was shown to identify important safety aspects of drugs and chemicals more efficiently and accurately than can be achieved by animal testing.

Data from BioMAP Systems analysis of 776 environmental chemicals, including reference pharmaceuticals and failed drugs, on their ability to disrupt physiologically important human biological pathways were published this week in Nature Biotechnology. The results show that this in vitro approach can reproducibly identify potential toxicities and off-target drug effects, as well as pinpoint cellular mechanisms and specifically affected biomarker endpoints underlying specific types of adverse reactions in humans. DiscoveRx Corporation’s BioSeek division conducted the analysis in collaboration with scientists from the U.S. Food and Drug Administration, National Institutes of Health and U.S. Environmental Protection Agency as part of the EPA ToxCast Program.

Assessing the safety aspects of drugs, consumer products and environmental chemicals has been historically undertaken through animal testing. However, the vast number of chemicals needing such toxicological assessment  and the fact that results in animals often do not translate well to results in humans require the development of alternative, faster, more accurate and humane testing approaches.

“This publication examines an unprecedentedly large data set in terms of number of chemicals, chemical diversity and types of assays screened phenotypically in BioMAP primary human cell models of tissue biology and disease,” said Ellen L. Berg, Ph.D., Scientific Director and General Manager of DiscoveRx’s BioSeek division and an author of the publication.  “In contrast to screening approaches aimed at understanding the actions of a single agent at the molecular and mechanistic level, this method harvests the collective knowledge embedded in reference chemicals with respect to their molecular targets, mechanisms of action, and animal and human toxicity and applies it to characterizing the biological activity of new chemicals or medicines.

“Our results show such systems to be a highly useful and reproducible tool for predictive toxicology that can identify potential chemical targets, toxicological liabilities and molecular mechanisms that elucidate specific adverse outcome pathways for drugs and other chemicals,” Dr. Berg continued. “Even using a limited set of primary human cell systems, we were able to recognize consistent patterns of activity that were closely correlated with diverse drug actions and toxicities. New chemicals falling into profile clusters with known activities suggest specific potential toxicities for more careful evaluation, greatly increasing the efficiency of toxicity testing by focusing resources for follow-up testing on the bioactivities of highest concern.”

For example, drugs and chemicals, including selective estrogen receptor modulators, tamoxifen and raloxifene, that are associated with thrombosis-related side effects, like deep vein thrombosis (DVT), were found to preferentially increase the levels of tissue factor in BioMAP models of vascular inflammation.  Thus, the use of these models for screening earlier in the drug discovery process may help identify new medicines with reduced potential for this debilitating side effect.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DiscoveRx Corporation Continues to Innovate with Solutions for Epigenetic Drug Discovery Programs
The company announced availability of platform for studying Bromodomains, an emerging class of epigenetic targets.
Monday, February 06, 2012
DiscoveRx Expands its GPCR Technology Portfolio to Include Advanced Technologies
Introduces two additional GPCR platforms to facilitate counterscreening, lead optimization and SAR evaluation of compounds.
Friday, April 09, 2010
Scientific News
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
Molecule Prevents Effect of Chemotherapy
Danish researchers from Aarhus University Hospital and Aarhus University have made a possible breakthrough in the treatment of colorectal cancer.
Hope for Zika Treatment Found in Drug Screening
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection.
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
New Possibilities Tumor Research
Grazer researchers say gene activity of the tumor from the analysis of circulating DNA in blood ahead.
Game Changing Antibacterial Drug Research
Researchers publish report on the synthesis of a newly discovered “game-changing” antibiotic, Teixobactin.
New Hope for Zika Treatment Found in Large-Scale Screen of Existing Drugs
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Breakthrough in GPCR Understanding
Integral Molecular announces breakthrough in understanding the functionality of GPCRs, the largest class of drug targets in human disease.
Enzyme that Triggers Cell Demise in ALS Identified
Scientists from Harvard have identified a key instigator of nerve cell damage in people with amyotrophic lateral sclerosis (ALS).
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!