Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

CRI Finds Key to Identifying, Enriching Mesenchymal Stem Cells

Published: Tuesday, June 24, 2014
Last Updated: Tuesday, June 24, 2014
Bookmark and Share
Biomarker enables researchers to accurately characterize the properties and function of MSCs in the body.

The Children’s Medical Center Research Institute at UT Southwestern (CRI) has identified a biomarker that enables researchers to accurately characterize the properties and function of mesenchymal stem cells (MSCs) in the body.

MSCs are the focus of nearly 200 active clinical trials registered with the National Institutes of Health, targeting conditions such as bone fractures, cartilage injury, degenerative disc disease, and osteoarthritis.

The finding, published in the journal Cell Stem Cell on June 19, significantly advances the field of MSC biology, and if the same biomarker identified in CRI’s studies with mice works in humans, the outlook for clinical trials that use MSCs will be improved by the ability to better identify and characterize the relevant cells.

“There has been an increasing amount of clinical interest in MSCs, but advances have been slow because researchers to date have been unable to identify MSCs and study their normal physiological function in the body,” said Dr. Sean Morrison, Director of the Children’s Research Institute, Professor of Pediatrics at UT Southwestern Medical Center, and a Howard Hughes Medical Institute Investigator. “We found that a protein known as leptin receptor can serve as a biomarker to accurately identify MSCs in adult bone marrow in vivo, and that those MSCs are the primary source of new bone formation and bone repair after injury.”

In the course of their investigation, the CRI researchers found that leptin receptor-positive MSCs are also the main source of factors that promote the maintenance of blood-forming stem cells in the bone marrow.

“Unfortunately, many clinical trials that are testing potential therapies using MSCs have been hampered by the use of poorly characterized and impure collections of cultured cells,” said Dr. Morrison, senior author of the study and holder of the Mary McDermott Cook Chair in Pediatric Genetics at UT Southwestern.

Dr. Morrison continued, “If this finding is duplicated in our studies with human MSCs, then it will improve the characterization of MSCs that are used clinically and could increase the probability of success for well-designed clinical trials using MSCs.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Targeting Lung Cancer Through KRAS
Researchers have identified a new way to target lung cancer, through one of the most commonly mutated genes in human cancer.
Monday, August 01, 2016
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Ribosome Recycling as a Drug Target
Researchers explain mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Toxoplasma’s Balancing Act Explained
Parasite’s method of rewiring our immune response leads to novel tool for drug tests.
Cancer Signaling Pathway Illuminating Way To Therapy
Researchers refine a pro-growth signalling pathway, common to cancers, that can kill cancer cells while leaving healthy cells unharmed.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!