Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


MaxDiscovery™ GAPDH ELISA Kit

Product Description
The MaxDiscovery™ Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) ELISA Kit is an enzyme immunoassay that analyzes the quantity of GAPDH in cells, tissues, serum or urine. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) is well known as one of the key enzymes involved in glycolysis. GAPDH initiates the second stage of glycolysis, catalyzing the reaction that converts glyceraldehyde 3-phosphate (GAP) into 1,3 bisphosphoglycerate (1,3 BPG). GAPDH oxidizes and phosphorylates GAP to produce 1,3 BPG, which is then used as an intermediate in the synthesis of ATP. While the glycolytic function of GAPDH is widely known, recent evidence suggests that GAPDH is a highly versatile molecule that plays several diverse roles in living systems. Mammalian GAPDH is involved in a great number of intracellular processes such as membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. There have also been many findings that GAPDH plays a role in different pathologies including prostate cancer progression, programmed neuronal cell death and age-related neuronal diseases, i.e. Alzheimer’s and Huntington’s disease. The GAPDH gene is constitutively expressed at high levels in almost all tissues. However, the molecular mechanism that sustains high-level expression of this housekeeping enzyme is still unclear. GAPDH is almost always a tetramer and is localized to the cytoplasm in healthy cells. Translocation of GAPDH into the nucleus is seen during its role in the early stages of apoptosis and oxidative stress. Because of its high-level and constitutive expression, GAPDH is widely used as a loading control for Northern/Western blots and for protein normalization. Like most ELISA assays, the MaxDiscovery™ GAPDH ELISA Test relies on a Horseradish Perioxidase (HRP) conjugated antibody and the TMB (3,3´,5,5´-tetramethylbenzidine) substrate. TMB is a chromogen that yields a blue color when oxidized with hydrogen peroxide (catalyzed by HRP) that has major absorbances at 370 nm and 652 nm. The color then changes to yellow with the addition of acid with maximum absorbance at 450 nm. The relative amount of GAPDH protein in the cells will be directly proportional to the amount of signal that is obtained at 450 nm. Selected Citations: Jones, J. A. et al. (July, 2010) Alterations in membrane type-1 matrix metalloproteinase abundance after the induction of thoracic aortic aneurysm in a murine model. Am J Physiol Heart Circ Physiol, 299: H114 - H124. doi: 10.1152/ajpheart.00028.2010
Product MaxDiscovery™ GAPDH ELISA Kit
Company BIOO Scientific - Product Directory
Price Request a quote
More Information View company product page
Catalog Number 1 x 96 wells
Quantity 510
Company Logo

BIOO Scientific - Product Directory
3913 Todd Lane Suite 312 Austin, TX 78744, USA

Tel: +1 512-707-8993
Fax: +1 512-707-8122
Email: info@biooscientific.com



Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Penn State, TB Alliance, and GSK Partner To Discover New Treatments For TB
A new collaboration between TB Alliance, GSK, and scientists in the Eberly College of Science seeks to find new small molecules that can be used to create antibiotics in the fight against tuberculosis (TB).
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
New Method Opens Door to Development of Many New Medicines
Findings from TSRI reveal human proteins are better drug targets than previously thought.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.

SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!