Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>Resources>Latest Publications
  Latest Publications
Advanced Search

Keywords

Showing 100 Latest Publications
TitleDate Created
TGFBI Gene Mutation Analysis in Chinese Families with Corneal Dystrophies.Monday, June 27, 2016
Cai J, Zhu L, Zha Y, Kang Q,
Genetic testing and molecular biomarkers. 27-Jun-2016
TGFBI gene mutations were present in all three Chinese families with corneal dystrophy, and our study further verified the relationship between phenotype and genotype of corneal dystrophy.
Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.Monday, June 27, 2016
Hui N, Sun X, Song Z, Niu S, Luo X,
Biosensors & bioelectronics. 11-Jun-2016
An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling.
An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus.Monday, June 27, 2016
Adegoke O, Seo MW, Kato T, Kawahito S, Park EY,
Biosensors & bioelectronics. 11-Jun-2016
Ultrasensitive, rapid and selective diagnostic probes are urgently needed to overcome the limitations of traditional probes for norovirus (NV). Here, we report the detection of NV genogroup II via nucleic acid hybridization technology using a quantum dot (QD)-conjugated molecular beacon (MB) probe. To boost the sensitivity of the MB assay system, an ultrasensitive QD fluorophore with unique optical properties was synthesized, characterized and exploited as a fluorescence signal generator. Alloyed thioglycolic (TGA)-capped CdZnSeS QDs with a high photoluminescence (PL) quantum yield (QY) value of 92% were synthesized, and a modified silanization method was employed to encapsulate the thiol-capped QDs in a silica layer. The resulting highly luminescent alloyed SiO2-coated CdZnSeS QDs had a remarkable PL QY value of 98%. Transmission electron microscopy and dynamic light scattering confirmed the monodispersity of the alloyed nanocrystals, and zeta potential analysis confirmed their colloidal stability. Powder X-ray diffraction and PL lifetime measurements confirmed the surface modification of the QDs. The alloyed TGA-capped and SiO2-coated CdZnSeS QD-conjugated MB bioprobes detected extremely low concentrations of NV RNA. Ultrasensitive detection of low concentrations of NV RNA with a limit of detection (LOD) of 8.2copies/mL in human serum and a LOD of 9.3 copies/mL in buffer was achieved using the SiO2-coated CdZnSeS QD-MB probes, an increase in sensitivity of 3-fold compared with the detection limit for NV RNA using TGA-capped CdZnSeS QD-MBs. The additional merits of our detection system are rapidity, specificity and improved sensitivity over conventional molecular test probes.
Angiotensin II-Receptor Inhibition With Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients With Early Breast Cancer: A Randomized Clinical Trial.Monday, June 27, 2016
Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven ED, Altena R, Honkoop A, Los M, Smit WM, Nieboer P, Smorenburg CH, Mandigers CM, van der Wouw AJ, Kessels L, van der Velden AW, Ottevanger PB, Smilde T, de Boer J, van Veldhuisen DJ, Kema IP, de Vries EG, Schellens JH,
JAMA oncology. 23-Jun-2016
clinicaltrials.gov Identifier: NCT00459771.
Could Neutrophilcd64 Expression Be Used As A Diagnostic Parameter Of Bacteremia In Patients With Febril Neutropenia?Monday, June 27, 2016
Efe İris N, Yıldırmak T, Gedik H, Şimşek F, Aydın D, Demirel N, Yokuş O,
Turkish journal of haematology : official journal of Turkish Society of Haematology. 27-Jun-2016
In total, we prospectively evaluated 31 febrile episodes. The case group consisted of 17 patients while the control group included 14 patients.CD64 is found on neutrophils of case group patients at a mean count of 8006 molecules/cell and of control group 2786 molecules/cell. CD64 levels of the case group were significantly higher than the control group (p 0,005). In the differentiation of the case group from the control group 2500 cut off value for CD64 had significant [AUC=0.792 (0.619-0.965)] predictive value (p=0,001). In the prediction of patients with a 2500 cut off value for CD64, sensitivity was 94.1%, positive predictive value was 76.2%, specificity was 64.3%, and negative predictive value was 90.0%.CRP levels and sedimentation rates did not differ significantly among the groups.(P 0,005) Conclusion: Neutrophil CD64 expression could be a good predictor as an immune parameter with a high sensitivity and negative predictive value for bacteremia in febril neutropenic patients.
Metabolomic Quality Assessment of EDTA Plasma and Serum Samples.Monday, June 27, 2016
Malm L, Tybring G, Moritz T, Landin B, Galli J,
Biopreservation and biobanking. 27-Jun-2016
Handling and processing of blood can significantly alter the molecular composition and consistency of biobank samples and can have a major impact on the identification of biomarkers. It is thus crucial to identify tools to determine the quality of samples to be used in biomarker discovery studies. In this study, a non-targeted gas chromatography/time-of-flight mass spectrometry (GC-TOFMS) metabolomic strategy was used with the aim of identifying quality markers for serum and plasma biobank collections lacking proper documentation of preanalytical handling. The effect of postcentrifugation delay was examined in serum stored in tubes with gel separation plugs and ethylenediaminetetraacetic acid (EDTA) plasma in tubes with or without gel separation plugs. The change in metabolic pattern was negligible in all sample types processed within 3 hours after centrifugation regardless of whether the samples were kept at 4°C or 22°C. After 8 and 24 hours postcentrifugation delay before aliquoting, there was a pronounced increase in the number of affected metabolites, as well as in the magnitude of the observed changes. No protective effect on the metabolites was observed in gel-separated EDTA plasma samples. In a separate series of experiments, lactate and glucose levels were determined in plasma to estimate the effect of precentrifugation delay. This separate experiment indicates that the lactate to glucose ratio may serve as a marker to identify samples with delayed time to centrifugation. Although our data from the untargeted GC-TOFMS analysis did not identify any specific markers, we conclude that plasma and serum metabolic profiles remain quite stable when plasma and serum are centrifuged and separated from the blood cells within 3 hours.
Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems.Monday, June 27, 2016
Wolf C, Klein D, Richter K, Weber-Blaschke G,
The Science of the total environment. 24-Jun-2016
Wood biomass, especially when applied for heating, plays an important role for mitigating environmental impacts such as climate change and the transition towards higher shares of renewable energy in today's energy mix. However, the magnitude of mitigation benefits and burdens associated with wood use can vary greatly depending on regional parameters such as the displaced fossil reference or heating mix. Therefore, regionalized displacement factors, considering region-specific production conditions and substituted products are required when assessing the precise contribution of wood biomass towards the mitigation of environmental impacts. We carried out Life Cycle Assessments of wood heating systems for typical Bavarian conditions and substitute energy carriers with a focus on climate change and particulate matter emissions. In order to showcase regional effects, we created weighted displacement factors for the region of Bavaria, based on installed capacities of individual wood heating systems and the harvested tree species distribution. The study reveals that GHG displacements between -57gCO2-eq.∗MJ(-1) of useful energy through the substitution of natural gas with a 15kW spruce pellets heating system and -165gCO2-eq.∗MJ(-1) through the substitution of power utilized for heating with a modern 6kW beech split log heating system can be achieved. It was shown that the GHG mitigation potentials of wood utilization are overestimated through the common use of light fuel oil as the only reference system. We further propose a methodology for the calculation of displacement factors which is adaptable to other regions worldwide. Based on our approach it is possible to generate displacement factors for wood heating systems which enable accurate decision-making for project planning in households, heating plants, communities and also for entire regions.
Automated measurement of estrogen receptor in breast cancer: a comparison of fluorescent and chromogenic methods of measurement.Monday, June 27, 2016
Zarrella ER, Coulter M, Welsh AW, Carvajal DE, Schalper KA, Harigopal M, L Rimm D, M Neumeister V,
Laboratory investigation; a journal of technical methods and pathology. 27-Jun-2016
Whereas FDA-approved methods of assessment of estrogen receptor (ER) are 'fit for purpose', they represent a 30-year-old technology. New quantitative methods, both chromogenic and fluorescent, have been developed and studies have shown that these methods increase the accuracy of assessment of ER. Here, we compare three methods of ER detection and assessment on two retrospective tissue microarray (TMA) cohorts of breast cancer patients: estimates of percent nuclei positive by pathologists and by Aperio's nuclear algorithm (standard chromogenic immunostaining), and immunofluorescence as quantified with the automated quantitative analysis (AQUA) method of quantitative immunofluorescence (QIF). Reproducibility was excellent (R(2)>0.95) between users for both automated analysis methods, and the Aperio and QIF scoring results were also highly correlated, despite the different detection systems. The subjective readings show lower levels of reproducibility and a discontinuous, bimodal distribution of scores not seen by either mechanized method. Kaplan-Meier analysis of 10-year disease-free survival was significant for each method (Pathologist, P=0.0019; Aperio, P=0.0053, AQUA, P=0.0026); however, there were discrepancies in patient classification in 19 out of 233 cases analyzed. Out of these, 11 were visually positive by both chromogenic and fluorescent detection. In 10 cases, the Aperio nuclear algorithm labeled the nuclei as negative; in 1 case, the AQUA score was just under the cutoff for positivity (determined by an Index TMA). In contrast, 8 out of 19 discrepant cases had clear nuclear positivity by fluorescence that was unable to be visualized by chromogenic detection, perhaps because of low positivity masked by the hematoxylin counterstain. These results demonstrate that automated systems enable objective, precise quantification of ER. Furthermore, immunofluorescence detection offers the additional advantage of a signal that cannot be masked by a counterstaining agent. These data support the usage of automated methods for measurement of this and other biomarkers that may be used in companion diagnostic tests.Laboratory Investigation advance online publication, 27 June 2016; doi:10.1038/labinvest.2016.73.
Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.Tuesday, June 28, 2016
Sapcariu SC, Kanashova T, Dilger M, Diabaté S, Oeder S, Passig J, Radischat C, Buters J, Sippula O, Streibel T, Paur HR, Schlager C, Mülhopt S, Stengel B, Rabe R, Harndorf H, Krebs T, Karg E, Gröger T, Weiss C, Dittmar G, Hiller K, Zimmermann R,
PloS one. 2016
Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.
High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin.Monday, June 27, 2016
Johnson BR, Eldred T, Nguyen AT, Payne WM, Schmidt EE, Alansari AY, Amburgey JE, Poler JC,
ACS applied materials & interfaces. 27-Jun-2016
As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to development new materials that remove them rapidly and at high-capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 seconds to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 minutes. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates thus, these nanomaterials act as a "contact resin."
Enhanced sensitivity of cancer stem cells to chemotherapy using functionalized mesoporous silica nanoparticles.Monday, June 27, 2016
Chen Z, Zhu P, Zhang Y, Liu Y, He Y, Zhang L, Gao YF,
Molecular pharmaceutics. 27-Jun-2016
Cancer stem cells (CSCs) are responsible for cancer drug resistance with high expression of ABCG2, which pumps the internalized chemotherapeutic out to escape drug-induced cytotoxicity. Here, we established a functionalized mesoporous silica nanoparticle (MSN) system to deliver shABCG2 and doxorubicin (Dox) synergistically. With excellent cell uptake and endosomal escape capacities, the dual-delivery carriers internalized shABCG2 and Dox into CSCs efficiently. ABCG2 depletion increased intracellular and intranuclear Dox enrichment, drove vigorous Dox-induced cell death, and impaired the self-renewal of CSCs. Additionally, the nanoparticles eliminated tumors efficiently and reduced tumor initiation by CSCs in vivo, with negligible side effects. Our findings suggest that well-designed delivery systems for conventional chemotherapeutic agents are promising for CSCs therapy.
Markers of anthropogenic contamination: A validated method for quantification of pharmaceuticals, illicit drug metabolites, perfluorinated compounds, and plasticisers in sewage treatment effluent and rain runoff.Monday, June 27, 2016
Wilkinson JL, Swinden J, Hooda PS, Barker J, Barton S,
Chemosphere. 24-Jun-2016
An effective, specific and accurate method is presented for the quantification of 13 markers of anthropogenic contaminants in water using solid phase extraction (SPE) followed by high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Validation was conducted according to the International Conference on Harmonisation (ICH) guidelines. Method recoveries ranged from 77 to 114% and limits of quantification between 0.75 and 4.91 ng/L. A study was undertaken to quantify the concentrations and loadings of the selected contaminants in 6 sewage treatment works (STW) effluent discharges as well as concentrations in 5 rain-driven street runoffs and field drainages. Detection frequencies in STW effluent ranged from 25% (ethinylestradiol) to 100% (benzoylecgonine, bisphenol-A (BPA), bisphenol-S (BPS) and diclofenac). Average concentrations of detected compounds in STW effluents ranged from 3.62 ng/L (ethinylestradiol) to 210 ng/L (BPA). Levels of perfluorinated compounds (PFCs) perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) as well as the plasticiser BPA were found in street runoff at maximum levels of 1160 ng/L, 647 ng/L and 2405 ng/L respectively (8.52, 3.09 and 2.7 times more concentrated than maximum levels in STW effluents respectively). Rain-driven street runoff may have an effect on levels of PFCs and plasticisers in receiving rivers and should be further investigated. Together, this method with the 13 selected contaminants enables the quantification of various markers of anthropogenic pollutants: inter alia pharmaceuticals, illicit drugs and their metabolites from humans and improper disposal of drugs, while the plasticisers and perfluorinated compounds may also indicate contamination from industrial and transport activity (street runoff).
Effects of heterocyclic-based head group modifications on the structure-activity relationship of tocopherol-based lipids for non-viral gene delivery.Monday, June 27, 2016
Gosangi M, Mujahid TY, Gopal V, Patri SV,
Organic & biomolecular chemistry. 27-Jun-2016
Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors. In this study, we designed and synthesized several tocopherol-based lipids varying in the head group region. Here, we present the structure-activity relationship of stable aqueous suspensions of lipids that were synthetically prepared and formulated with 1,2-dioleoyl phosphatidyl ethanolamine (DOPE) as the co-lipid. The physicochemical properties such as the hydrodynamic size, zeta potential, stability and morphology of these formulations were investigated. Interaction with plasmid DNA was clearly demonstrated through gel binding and EtBr displacement assays. Further, the transfection potential was examined in mouse neuroblastoma Neuro-2a, hepatocarcinoma HepG2, human embryonic kidney and Chinese hamster ovarian cell lines, all of different origins. Cell-uptake assays with N-methylpiperidinium, N-methylmorpholinium, N-methylimidazolium and N,N-dimethylaminopyridinium head group containing formulations evidently depicted efficient cell uptake as observed by particulate cytoplasmic fluorescence. Trafficking of lipoplexes using an endocytic marker and rhodamine-labeled phospholipid DHPE indicated that the lipoplexes were not sequestered in the lysosomes. Importantly, lipoplexes were non-toxic and mediated good transfection efficiency as analyzed by β-Gal and GFP reporter gene expression assays which established the superior activity of lipids whose structures correlate strongly with the transfection efficiency.
Inherited platelet disorders: Insight from platelet genomics using next-generation sequencing.Monday, June 27, 2016
Maclachlan A, Watson SP, Morgan NV,
Platelets. 27-Jun-2016
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders associated with normal or reduced platelet counts and bleeding diatheses of varying severities. The identification of the underlying cause of IPDs is clinically challenging due to the absence of a gold-standard platelet test, and is often based on a clinical presentation and normal values in other hematology assays. As a consequence, a DNA-based approach has a potentially important role in the investigation of these patients. Next-generation sequencing (NGS) technologies are allowing the rapid analysis of genes that have been previously implicated in IPDs or that are known to have a key role in platelet regulation, as well as novel genes that have not been previously implicated in platelet dysfunction. The potential limitations of NGS arise with the interpretation of the sheer volume of genetic information obtained from whole exome sequencing (WES) or whole genome sequencing (WGS) in order to identify function-disrupting variants. Following on from bioinformatic analysis, a number of candidate genetic variants usually remain, therefore adding to the difficulty of phenotype-genotype segregation verification. Linking genetic changes to an underlying bleeding disorder is an ongoing challenge and may not always be feasible due to the multifactorial nature of IPDs. Nevertheless, NGS will play a key role in our understanding of the mechanisms of platelet function and the genetics involved.
Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.Tuesday, June 28, 2016
Bamel K, Gupta R, Gupta SC,
Plant signaling & behavior. 2-Jun-2016
We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants.
The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis.Monday, June 27, 2016
Tang W, Thibodeaux GN, van der Donk WA,
ACS chemical biology. 27-Jun-2016
Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPS formed by addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Non-enzymatic cyclization of the small subunit of a virulent lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a Dhx-Dhx-Xxx-Xxx-Cys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities.
Radiolabeled B9958 derivatives for imaging bradykinin B1 receptor expression with positron emission tomography: effect of the radiolabel-chelator complex on biodistribution and tumor uptake.Monday, June 27, 2016
Zhang Z, Amouroux G, Pan J, Jenni S, Zeisler J, Zhang C, Liu Z, Perrin DM, Benard F, Lin KS,
Molecular pharmaceutics. 27-Jun-2016
Bradykinin B1 receptor (B1R) which is up-regulated in a variety of malignancies is an attractive cancer imaging biomarker. In this study we optimized the selection of radiolabel-chelator complex to improve tumor uptake and tumor-to-background contrast of radiolabeled analogs of B9958, a potent B1R antagonist. Peptide sequences were assembled on solid-phase. Cold standards were prepared by incubating DOTA-/NODA-conjugated peptides with GaCl3, and by incubating AlOH-NODA-conjugated peptide with NaF. Binding affinities were measured via in vitro competition binding assays. 68Ga and 18F labeling experiments were performed in acidic buffer and purified by HPLC. Imaging/biodistribution studies were performed in mice bearing both B1R-positive (B1R+) HEK293T::hB1R and B1R-negative (B1R-) HEK293T tumors. Z02176 (Ga-DOTA-Pip-B9958; Pip: 4-amino-(1-carboxymethyl)piperidine), Z02137 (Ga-NODA-Mpaa-Pip-B9958; Mpaa: 4-methylphenylacetic acid) and Z04139 (AlF-NODA-Mpaa-Pip-B9958) bound hB1R with high affinity (Ki = 1.4 - 2.5 nM). 68Ga-/18F-labeled peptides were obtained on average in ≥ 32% decay-corrected radiochemical yield with > 99% radiochemical purity and 100 - 261 GBq/µmol specific activity. Biodistribution/imaging studies (at 1-h post-injection) showed that all tracers cleared rapidly from background tissues (except kidneys), and were excreted predominantly via the renal pathway. Only kidneys, bladders and B1R+ tumors were clearly visualized in PET images. Uptake in B1R+ tumor was higher by using 68Ga-Z02176 (28.9 ± 6.21 %ID/g) and 18F-Z04139 (22.6 ± 3.41 %ID/g) than 68Ga-Z02137 (14.0 ± 4.86 %ID/g). The B1R+ tumor-to-blood and B1R+ tumor-to-muscle contrast ratios were also higher for 68Ga-Z02176 (56.1 ± 17.3 and 167 ± 57.6) and 18F-Z04139 (58.0 ± 20.9 and 173 ± 42.9) than 68Ga-Z02137 (34.3 ± 15.2 and 103 ± 30.2). With improved target-to-background contrast 68Ga-Z02176 and 18F-Z04139 are promising for imaging B1R expression in cancers with PET.
Intermolecular Photocatalyzed Heck-like Coupling of Unactivated Alkyl Bromides by a Dinuclear Gold Complex.Monday, June 27, 2016
Hashmi AS,
Chemistry (Weinheim an der Bergstrasse, Germany). 27-Jun-2016
A practical protocol for a photocatalyzed alkyl-Heck-like reaction of unactivated alkyl bromides and different alkenes by dinuclear gold photoredox catalysis in the presence of an inorganic base is reported. Primary, secondary and tertiary unactivated alkyl bromides with β-hydrogen can be applied. Esters, aldehydes, ketones, nitriles, alcohols, heterocycles, alkynes, alkenes, ethers and halogen moieties are all well tolerated. Besides 1,1-diarylalkenes also silylenolether and enamides can be applied which further increases the synthetic potential of the reaction. The mild reaction conditions, broad substrate scope and an excellent functional-group tolerance deliver an ideal tool for synthetic chemists that can even be used for challenging late-stage modification of complex natural products.
Positive Affect, Social Connectedness, and Healthy Biomarkers in Japan and the U.S.Monday, June 27, 2016
Yoo J, Miyamoto Y, Ryff CD,
Emotion (Washington, D.C.). 27-Jun-2016
Previous studies have shown that positive affect (PA) and social connectedness predict better health in the United States (U.S.). However, the relevance of such findings for other cultural contexts has been largely ignored. The present study investigated the interplay of PA, social connectedness, and health using large probability samples of Japanese and U.S. adults. Health was measured objectively with biomarkers that represent well-functioning physiological systems: HDL (high-density lipoprotein) and DHEA-S (dehydroepiandrosterone-sulfate). Lower levels of both biomarkers (i.e., less healthy biomarker profile) were found among those in Japan who reported high PA in combination with low social connectedness. In the U.S, the general pattern was that those with greater PA showed healthier HDL levels regardless of social connectedness. The findings highlight cultural variations in the health implications of how PA and social connectedness come together. (PsycINFO Database Record
Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.Monday, June 27, 2016
Krasodomska O, Paolicelli P, Cesa S, Casadei MA, Jungnickel C,
Journal of colloid and interface science. 16-Jun-2016
In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs.
Biomarkers in pancreas transplant.Monday, June 27, 2016
Burke GW, Chen LJ, Ciancio G, Pugliese A,
Current opinion in organ transplantation. 24-Jun-2016
The monitoring of pancreas transplant biomarkers, particularly those associated with autoimmunity, has led to new insights into the pathogenesis of T1D. Progress in the elucidation of mechanisms of autoimmunity may lead to novel therapeutic approaches to both T1D recurrence of the pancreas transplant and perhaps also new onset T1D.
Application of ambient ionization high resolution mass spectrometry to determination of the botanical provenance of the constituents of psychoactive drug mixtures.Monday, June 27, 2016
Lesiak AD, Musah RA,
Forensic science international. 14-Jun-2016
A continuing challenge in analytical chemistry is species-level determination of the constituents of mixtures that are made of a combination of plant species. There is an added urgency to identify components in botanical mixtures that have mind altering properties, due to the increasing global abuse of combinations of such plants. Here we demonstrate the proof of principle that ambient ionization mass spectrometry, namely direct analysis in real time-high resolution mass spectrometry (DART-HRMS), and statistical analysis tools can be used to rapidly determine the individual components within a psychoactive brew (Ayahuasca) made from a mixture of botanicals. Five plant species used in Ayahuasca preparations were subjected to DART-HRMS analysis. The chemical fingerprint of each was reproducible but unique, thus enabling discrimination between them. The presence of important biomarkers, including N,N-dimethyltryptamine, harmaline and harmine, was confirmed using in-source collision-induced dissociation (CID). Six Ayahuasca brews made from combinations of various plant species were shown to possess a high level of similarity, despite having been made from different constituents. Nevertheless, the application of principal component analysis (PCA) was useful in distinguishing between each of the brews based on the botanical species used in the preparations. From a training set based on 900 individual analyses, three principal components covered 86.38% of the variance, and the leave-one-out cross validation was 98.88%. This is the first report of ambient ionization MS being successfully used for determination of the individual components of plant mixtures.
Thiotagetin A, a new cytotoxic thiophene from Tagetes minuta.Monday, June 27, 2016
Ibrahim SR, Mohamed GA,
Natural product research. 27-Jun-2016
Phytochemical investigation of the n-hexane fraction of the methanolic extract of Tagetes minuta L. (Asteraceae) aerial parts afforded a new thiophene derivative: thiotagetin A (3), together with β-sitosterol (1) and stigmasterol (2). The structure of the new thiophene was identified by UV, IR, 1D ((1)H and (13)C), 2D ((1)H-(1)H COSY, HSQC and HMBC) NMR and HRESIMS spectral data. Compound 3 displayed cytotoxic activity against KB and MCF7 cancer cell lines with ED50 values of 2.03 and 3.88 μg/mL, respectively, compared to adriamycin (0.26 and 0.07 μg/mL, respectively).
Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders.Monday, June 27, 2016
Desmet E, Van Gele M, Lambert J,
Expert opinion on drug delivery. 27-Jun-2016
Conventional liposomes are still popular in the domain of topical or transdermal drug delivery and dominate the market landscape. However, several other carriers, such as exosomes and niosomes, are being explored which offer distinct advantages over liposomes and should therefore not be disregarded when selecting a proper drug delivery system.
Methods for Doping Detection.Tuesday, June 28, 2016
Ponzetto F, Giraud S, Leuenberger N, Boccard J, Nicoli R, Baume N, Rudaz S, Saugy M,
Frontiers of hormone research. 27-6-2016
Over the past few years, the World Anti-Doping Agency (WADA) has focused its efforts on detecting not only small prohibited molecules, but also larger endogenous molecules such as hormones, in the view of implementing an endocrinological module in the Athlete Biological Passport (ABP). In this chapter, the detection of two major types of hormones used for doping, growth hormone (GH) and endogenous anabolic androgenic steroids (EAASs), will be discussed: a brief historical background followed by a description of state-of-the-art methods applied by accredited anti-doping laboratories will be provided and then current research trends outlined. In addition, microRNAs (miRNAs) will also be presented as a new class of biomarkers for doping detection.
The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis.Monday, June 27, 2016
Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HM, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB,
Nature genetics. 27-Jun-2016
Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.
Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds.Monday, June 27, 2016
Nikel PI, Pérez-Pantoja D, de Lorenzo V,
Environmental microbiology. 27-Jun-2016
The metabolic versatility of the soil bacterium Pseudomonas putida is reflected by its ability to execute strong redox reactions (e.g., mono- and di-oxygenations) on aromatic substrates. Biodegradation of aromatics occurs via the pathway encoded in the archetypal TOL plasmid pWW0, yet the effect of running such oxidative route on redox balance against the background metabolism of P. putida remains unexplored. To answer this question, the activity of pyridine nucleotide transhydrogenases (that catalyze the reversible interconversion of NADH and NADPH) was inspected under various physiological and oxidative stress regimes. The genome of P. putida KT2440 encodes a soluble transhydrogenase (SthA) and a membrane-bound, proton-pumping counterpart (PntAB). Mutant strains, lacking sthA and/or pntAB, were subjected to a panoply of genetic, biochemical, phenomic, and functional assays in cells grown on customary carbon sources (e.g., citrate) versus difficult-to-degrade aromatic substrates. The results consistently indicated that redox homeostasis is compromised in the transhydrogenases-defective variant, rendering the mutant sensitive to oxidants. This metabolic deficiency was, however, counteracted by an increase in the activity of NADP(+) -dependent dehydrogenases in central carbon metabolism. Taken together, these observations demonstrate that transhydrogenases enable a redox-adjusting mechanism that comes into play when biodegradation reactions are executed to metabolize unusual carbon compounds. This article is protected by copyright. All rights reserved.
Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.Monday, June 27, 2016
Jia S, Yang Z, Ren K, Tian Z, Dong C, Ma R, Yu G, Yang W,
Journal of hazardous materials. 24-Jun-2016
Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.
HMGB1 Is a Potential Biomarker for Severe Viral Hemorrhagic Fevers.Tuesday, June 28, 2016
Resman Rus K, Fajs L, Korva M, Avšič-Županc T,
PLoS neglected tropical diseases. Jun-2016
Hemorrhagic fever with renal syndrome (HFRS) and Crimean-Congo hemorrhagic fever (CCHF) are common representatives of viral hemorrhagic fevers still often neglected in some parts of the world. Infection with Dobrava or Puumala virus (HFRS) and Crimean-Congo hemorrhagic fever virus (CCHFV) can result in a mild, nonspecific febrile illness or as a severe disease with hemorrhaging and high fatality rate. An important factor in optimizing survival rate in patients with VHF is instant recognition of the severe form of the disease for which significant biomarkers need to be elucidated. To determine the prognostic value of High Mobility Group Box 1 (HMGB1) as a biomarker for disease severity, we tested acute serum samples of patients with HFRS or CCHF. Our results showed that HMGB1 levels are increased in patients with CCHFV, DOBV or PUUV infection. Above that, concentration of HMGB1 is higher in patients with severe disease progression when compared to the mild clinical course of the disease. Our results indicate that HMGB1 could be a useful prognostic biomarker for disease severity in PUUV and CCHFV infection, where the difference between the mild and severe patients group was highly significant. Even in patients with severe DOBV infection concentrations of HMGB1 were 2.8-times higher than in the mild group, but the difference was not statistically significant. Our results indicated HMGB1 as a potential biomarker for severe hemorrhagic fevers.
Biological Functions of Interferon β-1a Are Enhanced By Deamidation.Monday, June 27, 2016
Mastrangeli R, Iozzino L, Lanzoni L, Angiuoni G, Ferrao C, Izzo A, Fiumi S, Camerini F, Mascia M, Palinsky W, Bierau H,
Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 27-Jun-2016
Human type I Interferons (IFN-β, IFN-ɛ, IFN-κ, IFN-ω, and 12 subtypes of IFN-α) are a family of pleiotropic cytokines with antiviral, antiproliferative, and immunomodulatory activities. They signal through the same cell surface receptors, IFNAR1 and IFNAR2, yet evoking markedly differential potency. One differentiating factor of IFN-β from other type I interferons is the presence of a consensus sequence (NG) for deamidation. Comparing almost completely deamidated IFN-β-1a with untreated IFN-β-1a, this present study reports the increased activities in 3 in-vitro bioassays testing the antiviral, antiproliferative, and immunomodulatory properties, respectively, of the molecule. Deamidated IFN-β-1a has the potential to improve current therapies in multiple sclerosis, and its ability to potentiate the MHC-Class I expression suggests a clinical benefit in diseases where the downmodulation of the MHC-class I expression plays a role (eg, in immuno-oncology combination therapies or antiviral agents). The present study on IFN-β deamidation adds a new prospective on deamidation as part of a posttranslational modification code that allows the modulation of the biological properties of proteins. Moreover, it underlines the unique IFN-β-1a properties that differentiate this molecule from other members of the type I interferon family.
The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.Monday, June 27, 2016
Tomlinson A, Drikas M, Brookes JD,
Water research. 19-Jun-2016
Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton.
Formate assimilation: The metabolic architecture of natural and synthetic pathways.Monday, June 27, 2016
Bar-Even A,
Biochemistry. 27-Jun-2016
Formate may become an ideal mediator between the physicochemical and the biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds to provide both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the low number of naturally-occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could enable growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals.
ASSESEMENT OF THE SEVERITY OF IMMUNODEFICIENCY IN PATIENTS OF ASIAN ETHNICITY WITH HIV/HCV CO-INFECTION.Tuesday, June 28, 2016
Begaidarova R, Asenova L, Alshynbekova G, Devdariani Kh, Dyusembaeva A, Starikov Y, Zolotareva O,
Georgian medical news. May-2016
The aim of the study was to determine the HIV RNA viral load and CD4+ cell count to assess the severity of immune deficiency in patients of Asian ethnicity with HIV/HCV co-infection by different HCV genotypes. 181 HIV-infected patients of Asian ethnicity were studied from several regions of Kazakhstan, predominantly from Karaganda region, including prisons. The diagnosis of HIV infection was confirmed by immunoblotting after a positive ELISA screening test. The patient data for analysis were extracted from the patients' medical charts. Analysis of peripheral blood and urine, blood biochemistry tests were performed for each patient. The flow cytometry was used to determine the CD3, CD4 and CD8 lymphocytes in the whole blood. Detection and quantification of HCV RNA in clinical samples of serum or plasma was performed by reverse transcription of viral RNA followed by amplification using DNA real-time polymerase chain reaction (RT-qPCR) with hybridization-fluorescence detection of PCR products in real-time. Statistical analysis was performed using STATISTICA software package. Student's t test was used to evaluate the differences between the means. HCV antibodies were detected in 73 patients out of 181. HCV genotyping showed presence of first genotype in 18 (24.7%), genotype 2 in 19 (26.0%) and genotype 3 in 36 (49.3%) patients. The third genotype was the most prevalent according to our study. More severe immunosuppression was observed in patients with HCV genotypes 1 and 3 in comparison with those with HCV genotype 2. HCV infection is a negative risk-factor in the course of HIV infection, accelerating the decrease of CD4+ cells. The greatest risk of progression of HIV infection to AIDS occurs in the presence of HCV genotype 1 and 3 which can be explained by more aggressive course of the disease and a poorer prognosis in comparison with the infection with genotype 2.
Chemical probes for methyl lysine reader domains.Monday, June 27, 2016
James LI, Frye SV,
Current opinion in chemical biology. 24-Jun-2016
The primary intent of a chemical probe is to establish the relationship between a molecular target, usually a protein whose function is modulated by the probe, and the biological consequences of that modulation. In order to fulfill this purpose, a chemical probe must be profiled for selectivity, mechanism of action, and cellular activity, as the cell is the minimal system in which 'biology' can be explored. This review provides a brief overview of progress towards chemical probes for methyl lysine reader domains with a focus on recent progress targeting chromodomains.
Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides.Monday, June 27, 2016
Sandreschi S, Piras AM, Batoni G, Chiellini F,
Nanomedicine (London, England). 27-Jun-2016
Antimicrobial peptides (AMPs) are a class of promising anti-infective molecules but their therapeutic application is opposed by their poor bioavailability, susceptibility to protease degradation and potential toxicity. The advancement of nanoformulation technologies offers encouraging perspectives for the development of novel therapeutic strategies based on AMPs to treat antibiotic resistant microbial infections. Additionally, the use of polymers endowed per-se with antibacterial properties, stands out as an innovative approach for the development of a new generation of drug delivery systems in which an enhanced antimicrobial action could be obtained by the synergic combination of bioactive polymer matrices and drugs. Herein, the latest AMPs drug delivery research is discussed.
Assessing zinc in humans.Monday, June 27, 2016
Lowe NM,
Current opinion in clinical nutrition and metabolic care. 24-Jun-2016
The most recent data on the potentially useful biomarkers support the further investigation of hair Zn concentration and indices of neurological function, particularly those assessing memory and attention. Of the emerging biomarkers, the measurement of DNA integrity and the expression of zinc transport proteins look promising.
Mitochondrial Encephalopathy and Optic Neuropathy Due to m.10158 MT-ND3 Complex I Mutation Presenting in an Adult Patient: Case Report and Review of the Literature.Tuesday, June 28, 2016
Vodopivec I, Cho TA, Rizzo JF, Frosch MP, Sims KB,
The neurologist. Jul-2016
ND3 disease due to m.10158T>C mutation was previously described only in patients with Leigh or Leigh-like syndrome. Our findings thus indicate that ND3 disease can manifest with atypical phenotype in adults. The diagnosis of mitochondrial disease caused by other than typical MELAS-associated mutations in adults with stroke-like episodes, headaches, and seizures should be considered. An analysis of tissue other than blood, which is more likely to harbor a tissue-specific mitochondrial DNA mutation at a measurable level, may be necessary for diagnosis.
If it looks like a duck and quacks like a duck…: Energy "shots" should be regulated as energy drinks in Canada.Tuesday, June 28, 2016
Hammond D, Reid JL,
Canadian journal of public health = Revue canadienne de santé publique. 2016
In 2012, Health Canada transitioned caffeinated energy drinks from Natural Health Product to Food and Drug classification and regulations, implementing temporary guidelines with requirements such as caffeine content limits, mandatory cautionary labelling, and restrictions on health claims. "Energy shots" often contain as much or more caffeine compared to energy drinks and have been associated with a similar number of adverse health events. However, current requirements for energy drinks do not apply to energy shots, which remain classified as "natural health products" on the basis that they are "not consumed or perceived as foods" in the same way as energy drinks. An online survey was conducted with Canadian youth and young adults aged 12-24 years (N = 2040) in October 2014 to examine perceptions of energy shots. Respondents viewed an image of a popular energy shot and were asked which term best described it, with six randomly-ordered options. The vast majority (78.8%) perceived the energy shot as an "energy drink" (vs. "supplement", "vitamin drink", "natural health product", "soft drink" or "food product"). Given consumer perceptions and the similarity in product constituents, there is little basis for regulating energy shots differently from energy drinks; these products should be subject to similar labelling and health warning requirements.
The dependency on neighboring amino acids for reactivity of anti-citrullinated protein antibodies to citrullinated proteins.Monday, June 27, 2016
Dam CE, Houen G, Trier NH,
Scandinavian journal of clinical and laboratory investigation. 27-Jun-2016
Rheumatoid arthritis (RA) is an autoimmune connective tissue disease, associated with the presence of anti-citrullinated protein antibodies (ACPA). These antibodies have been found in approximately 70% of patients suffering from RA and they are currently used for diagnosis of RA. Although they exhibit an absolute need for citrulline for antibody reactivity, no precise cognate antigen for these antibodies has been determined. In this study, we analyzed the reactivity of ACPA to various citrullinated peptides by modified enzyme-linked immunosorbent assays, in order to determine the dependency of specific amino acids for antibody reactivity. A non-human protein (ovalbumin) and antigens directly related to RA were used as templates for synthesis of non-modified and citrullinated peptides, becoming potential target epitopes. Mainly peptides containing a Cit-Gly motif were recognized by ACPAs, while no particular amino acids N-terminal of citrulline were found to be essential for antibody reactivity. Moreover, ACPA reactivity was not restricted to antigens known to be associated with ACPA-positive RA alone, but also to proteins without relation to RA, primarily illustrating that any protein in theory can be turned into an RA autoantigen, by introducing Cit-Gly motifs. Knowledge about the interaction between ACPAs and their citrullinated targets is important for understanding autoimmune ACPA responses in RA, which are known to contribute to the pathophysiology.
Direct-geneFISH: A simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms.Monday, June 27, 2016
Barrero-Canosa J, Moraru C, Zeugner L, Fuchs BM, Amann R,
Environmental microbiology. 27-Jun-2016
Although fluorescence in situ hybridization (FISH) with specific ribosomal RNA (rRNA) targeted oligonucleotides is a standard method to detect and identify microorganisms, the specific detection of genes in bacteria and archaea, for example by using geneFISH, requires complicated and lengthy (> 30 h) procedures. Here we report a much improved protocol, direct-geneFISH, which allows specific gene and rRNA detection within less than 6 h. For direct-geneFISH, CARD steps are removed and fluorochrome-labeled polynucleotide gene probes and rRNA-targeted oligonucleotide probes are hybridized simultaneously. The protocol allows quantification of gene copy numbers per cell and the signal of the directly labeled probes enables a sub-cellular localization of the rRNA and target gene. The detection efficiencies of direct-geneFISH were first evaluated on Escherichia coli carrying the target gene on a copy-control vector. We could show that gene copy numbers correlated to the geneFISH signal within the cells. The new protocol was then applied for the detection of the sulfate thiolhydrolase (soxB) genes in cells of the gammaproteobacterial clade SUP05 in Lake Rogoznica, Croatia. Cell and gene detection efficiencies by direct-geneFISH were statistically identical to those obtained with the original geneFISH, demonstrating the suitability of the simpler and faster protocol for environmental samples. This article is protected by copyright. All rights reserved.
Agonist-activated Bombyx corazonin receptor is internalized via an arrestin-dependent and clathrin-independent pathway.Monday, June 27, 2016
Yang J, Shen Z, Jiang X, Yang H, Huang H, Jin L, Chen Y, Shi L, Zhou N,
Biochemistry. 27-Jun-2016
Agonist-induced internalization plays a key role in the tight regulation of the extent and duration of G protein-coupled receptor signaling. Previously, we have shown that the Bombyx corazonin receptor (BmCrzR) activates both Gαq and Gαs-dependent signaling cascades. However, the molecular mechanisms involved in the regulation of the internalization and desensitization of BmCrzR remain to be elucidated. Here, vectors to express BmCrzR fused with enhanced green fluorescent protein (EGFP) at the C-terminal end were used to further characterize BmCrzR internalization. We found that the BmCrzR heterologously expressed in HEK-293 and BmN cells were rapidly internalized from the plasma membrane into the cytoplasm in a concentration- and time-dependent manner via a β-arrestin (Kurtz)-dependent and clathrin-independent pathway in response to agonist challenge. Whilst most of the internalized receptors were recycled to the cell surface via early endosomes, some others were transported to lysosomes for degradation. Assays using RNA interference revealed that both GRK2 and GRK5 were essentially involved in the regulation of BmCrzR phosphorylation and internalization. Further investigations indicated that the identified cluster of Ser/Thr residues (411TSS413) was responsible for GRK-mediated phosphorylation and internalization. This is the first detailed investigation of the internalization and trafficking of Bombyx corazonin receptors.
Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities.Monday, June 27, 2016
Stanisavljević NS, Ilić MD, Matić IZ, Jovanović ŽS, Čupić T, Dabić DČ, Natić MM, Tešić ŽL,
Nutrition and cancer. 27-Jun-2016
To date little has been done on identification of major phenolic compounds responsible for anticancer and antioxidant properties of pea (Pisum sativum L.) seed coat extracts. In the present study, phenolic profile of the seed coat extracts from 10 differently colored European varieties has been determined using ultrahigh-performance liquid chromatography-linear trap quadrupole orbitrap mass spectrometer technique. Extracts of dark colored varieties with high total phenolic content (up to 46.56 mg GAE/g) exhibited strong antioxidant activities (measured by 2,2-diphenyl-1-picrylhydrazyl or DPPH assay, and ferric ion reducing and ferrous ion chelating capacity assays) which could be attributed to presence of gallic acid, epigallocatechin, naringenin, and apigenin. The aqueous extracts of dark colored varieties exert concentration-dependent cytotoxic effects on all tested malignant cell lines (human colon adenocarcinoma LS174, human breast carcinoma MDA-MB-453, human lung carcinoma A594, and myelogenous leukemia K562). Correlation analysis revealed that intensities of cytotoxic activity of the extracts strongly correlated with contents of epigallocatechin and luteolin. Cell cycle analysis on LS174 cells in the presence of caspase-3 inhibitor points out that extracts may activate other cell death modalities besides caspase-3-dependent apoptosis. The study provides evidence that seed coat extracts of dark colored pea varieties might be used as potential cancer-chemopreventive and complementary agents in cancer therapy.
Relationship between Surface Properties and In Vitro Drug Release from a Compressed Matrix Containing an Amphiphilic Polymer Material.Tuesday, June 28, 2016
Yarce CJ, Pineda D, Correa CE, Salamanca CH,
Pharmaceuticals (Basel, Switzerland). 2016
The performance of compressed tablet drug delivery systems made using polymeric materials depend on multiple factors, such as surface properties like contact angle, surface free energy and water absorption rate, besides the release mechanisms driven by the kind of polymer used. Hence, it should be possible to establish a relationship between the surface properties and the drug release kinetics. Compressed tablets with different proportions of poly(maleic acid-alt-octadecene) potassium salt (0%, 10%, 20%, 30% and 40%) were prepared. Blends of a model drug (ampicillin trihydrate) and the polymer material were analyzed by DSC. The surface properties of the tablets were determined by the sessile drop method, while the surface energy was determined using the semi-empirical Young-Dupre, Neumann and OWRK models. The release profiles were determined simulating in vitro conditions (buffer solutions pH 1.2 and pH 7.4 with ionic strength of 1.5 M at 37 °C (310.15 K)). A kinetic analysis of the dissolution profiles using different models (zero order, first order, Higuchi and Korsmeyer-Peppas) was realized. The results showed a significant effect of the proportion of polymer in both the surface properties of the tablets and the dissolution release, indicating a relationship between the kinetic and thermodynamic properties.
Parameters Identification of Fluxgate Magnetic Core Adopting the Biogeography-Based Optimization Algorithm.Tuesday, June 28, 2016
Jiang W, Shi Y, Zhao W, Wang X,
Sensors (Basel, Switzerland). 2016
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core.
An Approach to the Use of Depth Cameras for Weed Volume Estimation.Tuesday, June 28, 2016
Andújar D, Dorado J, Fernández-Quintanilla C, Ribeiro A,
Sensors (Basel, Switzerland). 2016
The use of depth cameras in precision agriculture is increasing day by day. This type of sensor has been used for the plant structure characterization of several crops. However, the discrimination of small plants, such as weeds, is still a challenge within agricultural fields. Improvements in the new Microsoft Kinect v2 sensor can capture the details of plants. The use of a dual methodology using height selection and RGB (Red, Green, Blue) segmentation can separate crops, weeds, and soil. This paper explores the possibilities of this sensor by using Kinect Fusion algorithms to reconstruct 3D point clouds of weed-infested maize crops under real field conditions. The processed models showed good consistency among the 3D depth images and soil measurements obtained from the actual structural parameters. Maize plants were identified in the samples by height selection of the connected faces and showed a correlation of 0.77 with maize biomass. The lower height of the weeds made RGB recognition necessary to separate them from the soil microrelief of the samples, achieving a good correlation of 0.83 with weed biomass. In addition, weed density showed good correlation with volumetric measurements. The canonical discriminant analysis showed promising results for classification into monocots and dictos. These results suggest that estimating volume using the Kinect methodology can be a highly accurate method for crop status determination and weed detection. It offers several possibilities for the automation of agricultural processes by the construction of a new system integrating these sensors and the development of algorithms to properly process the information provided by them.
Smart Sensing System for the Prognostic Monitoring of Bone Health.Tuesday, June 28, 2016
Afsarimanesh N, Zia AI, Mukhopadhyay SC, Kruger M, Yu PL, Kosel J, Kovacs Z,
Sensors (Basel, Switzerland). 2016
The objective of this paper is to report a novel non-invasive, real-time, and label-free smart assay technique for the prognostic detection of bone loss by electrochemical impedance spectroscopy (EIS). The proposed system incorporated an antibody-antigen-based sensor functionalization to induce selectivity for the C-terminal telopeptide type one collagen (CTx-I) molecules-a bone loss biomarker. Streptavidin agarose was immobilized on the sensing area of a silicon substrate-based planar sensor, patterned with gold interdigital electrodes, to capture the antibody-antigen complex. Calibration experiments were conducted with various known CTx-I concentrations in a buffer solution to obtain a reference curve that was used to quantify the concentration of an analyte in the unknown serum samples. Multivariate chemometric analyses were done to determine the performance viability of the developed system. The analyses suggested that a frequency of 710 Hz is the most discriminating regarding the system sensitivity. A detection limit of 0.147 ng/mL was achieved for the proposed sensor and the corresponding reference curve was linear in the range of 0.147 ng/mL to 2.669 ng/mL. Two sheep blood samples were tested by the developed technique and the results were validated using enzyme-linked immunosorbent assay (ELISA). The results from the proposed technique match those from the ELISA.
Intelligent Multisensor Prodder for Training Operators in Humanitarian Demining.Tuesday, June 28, 2016
Fernández R, Montes H, Armada M,
Sensors (Basel, Switzerland). 2016
Manual prodding is still one of the most utilized procedures for identifying buried landmines during humanitarian demining activities. However, due to the high number of accidents reported during its practice, it is considered an outmoded and risky procedure and there is a general consensus about the need of introducing upgrades for enhancing the safety of human operators. With the aim of contributing to reduce the number of demining accidents, this paper presents an intelligent multisensory system for training operators in the use of prodders. The proposed tool is able to provide to deminers useful information in two critical issues: (a) the amount of force exerted on the target and if it is greater than the safe limit and, (b) to alert them when the angle of insertion of the prodder is approaching or exceeding a certain dangerous limit. Results of preliminary tests show the feasibility and reliability of the proposed design and highlight the potential benefits of the tool.
Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.Tuesday, June 28, 2016
Ichimaru S, Nakagawa S, Arai Y, Kishida T, Shin-Ya M, Honjo K, Tsuchida S, Inoue H, Fujiwara H, Shimomura S, Mazda O, Kubo T,
International journal of molecular sciences. 2016
Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.
Extraction, Characterization and Immunological Activity of Polysaccharides from Rhizoma gastrodiae.Tuesday, June 28, 2016
Chen J, Tian S, Shu X, Du H, Li N, Wang J,
International journal of molecular sciences. 2016
A response surface and Box-Behnken design approach was applied to augment polysaccharide extraction from the residue of Rhizoma gastrodiae. Statistical analysis revealed that the linear and quadratic terms for three variables during extraction exhibited obvious effects on extraction yield. The optimum conditions were determined to be a liquid-to-solid ratio of 54 mL/g, an extraction temperature of 74 °C, an extraction time of 66 min, and three extractions. These conditions resulted in a maximum Rhizoma gastrodiae polysaccharide (RGP) extraction yield of 6.11% ± 0.13%. Two homogeneous polysaccharides (RGP-1a and RGP-1b) were obtained using DEAE cellulose-52 and Sephadex G-100 columns. The preliminary characterization of RGP-1a and RGP-1b was performed using HPLC-RID, HPGPC, and FTIR. Tests of the immunological activity in vitro showed that the two polysaccharides could significantly stimulate macrophages to release NO and enhance phagocytosis in a dose-dependent manner. In particular, RGP-1b (200 μg/mL) and LPS (2 μg/mL) had almost the same influence on the NO production and phagocytic activity of RAW 264.7 macrophages (p > 0.05). All the data obtained indicate that RGP-1a and RGP-1b have the potential to be developed as a health food.
Chitosan Effects on Plant Systems.Tuesday, June 28, 2016
Malerba M, Cerana R,
International journal of molecular sciences. 2016
Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity.
Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro.Tuesday, June 28, 2016
Chen M, Zhao Z, Yu S,
International journal of molecular sciences. 2016
Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50) value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G₀/G₁ phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis.
Chemical Profile, Antioxidant and Antibacterial Activities of Achillea moschata Wulfen, an Endemic Species from the Alps.Tuesday, June 28, 2016
Vitalini S, Madeo M, Tava A, Iriti M, Vallone L, Avato P, Cocuzza CE, Simonetti P, Argentieri MP,
Molecules (Basel, Switzerland). 2016
Aerial parts of Achillea moschata Wulfen (Asteraceae) growing wild in the Italian Rhaetian Alps were investigated to describe, for the first time, their phenolic content, as well as to characterize the essential oil. Inspection of the metabolic profile combining HPLC-DAD and ESI-MS/MS data showed that the methanol extract contained glycosylated flavonoids with luteolin and apigenin as the main aglycones. Among them, the major compound was 7-O-glucosyl apigenin. Caffeoyl derivates were other phenolics identified. The essential oil obtained by steam distillation and investigated by GC/FID and GC/MS showed camphor, 1,8-cineole, and bornylacetate as the main constituents. The antioxidant capacity of three different extracts with increasing polarity and of the essential oil was evaluated by employing ABTS·+ and DPPH· radical scavenging assays. The methanolic extract was the only significantly effective sample against both synthetic radicals. All samples were also tested against Gram-positive (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa) bacterial species using the disk diffusion assay. The non-polar extracts (dichloromethane and petroleum ether) and the essential oil possessed a broad spectrum of antimicrobial activity expressed according to inhibition zone diameter (8-24 mm).
Activating and Attenuating the Amicoumacin Antibiotics.Tuesday, June 28, 2016
Park HB, Perez CE, Perry EK, Crawford JM,
Molecules (Basel, Switzerland). 2016
The amicoumacins belong to a class of dihydroisocoumarin natural products and display antibacterial, antifungal, anticancer, and anti-inflammatory activities. Amicoumacins are the pro-drug activation products of a bacterial nonribosomal peptide-polyketide hybrid biosynthetic pathway and have been isolated from Gram-positive Bacillus and Nocardia species. Here, we report the stimulation of a "cryptic" amicoumacin pathway in the entomopathogenic Gram-negative bacterium Xenorhabdus bovienii, a strain not previously known to produce amicoumacins. X. bovienii participates in a multi-lateral symbiosis where it is pathogenic to insects and mutualistic to its Steinernema nematode host. Waxmoth larvae are common prey of the X. bovienii-Steinernema pair. Employing a medium designed to mimic the amino acid content of the waxmoth circulatory fluid led to the detection and characterization of amicoumacins in X. bovienii. The chemical structures of the amicoumacins were supported by 2D-NMR, HR-ESI-QTOF-MS, tandem MS, and polarimeter spectral data. A comparative gene cluster analysis of the identified X. bovienii amicoumacin pathway to that of the Bacillus subtilis amicoumacin pathway and the structurally-related Xenorhabdus nematophila xenocoumacin pathway is presented. The X. bovienii pathway encodes an acetyltransferase not found in the other reported pathways, which leads to a series of N-acetyl-amicoumacins that lack antibacterial activity. N-acetylation of amicoumacin was validated through in vitro protein biochemical studies, and the impact of N-acylation on amicoumacin's mode of action was examined through ribosomal structural analyses.
Computational Evaluation of Nucleotide Insertion Opposite Expanded and Widened DNA by the Translesion Synthesis Polymerase Dpo4.Tuesday, June 28, 2016
Albrecht L, Wilson KA, Wetmore SD,
Molecules (Basel, Switzerland). 2016
Expanded (x) and widened (y) deoxyribose nucleic acids (DNA) have an extra benzene ring incorporated either horizontally (xDNA) or vertically (yDNA) between a natural pyrimidine base and the deoxyribose, or between the 5- and 6-membered rings of a natural purine. Far-reaching applications for (x,y)DNA include nucleic acid probes and extending the natural genetic code. Since modified nucleobases must encode information that can be passed to the next generation in order to be a useful extension of the genetic code, the ability of translesion (bypass) polymerases to replicate modified bases is an active area of research. The common model bypass polymerase DNA polymerase IV (Dpo4) has been previously shown to successfully replicate and extend past a single modified nucleobase on a template DNA strand. In the current study, molecular dynamics (MD) simulations are used to evaluate the accommodation of expanded/widened nucleobases in the Dpo4 active site, providing the first structural information on the replication of (x,y)DNA. Our results indicate that the Dpo4 catalytic (palm) domain is not significantly impacted by the (x,y)DNA bases. Instead, the template strand is displaced to accommodate the increased C1'-C1' base-pair distance. The structural insights unveiled in the present work not only increase our fundamental understanding of Dpo4 replication, but also reveal the process by which Dpo4 replicates (x,y)DNA, and thereby will contribute to the optimization of high fidelity and efficient polymerases for the replication of modified nucleobases.
Thyroid Hormone, Cancer, and Apoptosis.Tuesday, June 28, 2016
Lin HY, Chin YT, Yang YC, Lai HY, Wang-Peng J, Liu LF, Tang HY, Davis PJ,
Comprehensive Physiology. 2016
Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016.
Thyroid Hormone and Cardioprotection.Tuesday, June 28, 2016
Gerdes AM, Ojamaa K,
Comprehensive Physiology. 2016
The heart is a major target of thyroid hormones, with maintenance of euthyroid hormone balance critical for proper function. In particular, chronic low thyroid function can eventually lead to dilated heart failure with impaired coronary blood flow. New evidence also suggests that heart diseases trigger a reduction in cardiac tissue thyroid hormone levels, a condition that may not be detectible using serum hormone assays. Many animal and clinical studies have demonstrated a high prevalence of low thyroid function in heart diseases with worse outcomes from this condition. Animal and human studies have also demonstrated many benefits from thyroid hormone treatment of heart diseases, particularly heart failure. Nonetheless, this potential treatment has not yet translated to patients due to a number of important concerns. The most serious concern involves the potential of accidental overdose leading to increased arrhythmias and sudden death. Several important clinical studies, which actually used excessive doses of thyroid hormone analogs, have played a major role in convincing the medical community that thyroid hormones are simply too dangerous to be considered for treatment in cardiac patients. Nonetheless, this issue has not gone away due primarily to overwhelmingly positive evidence for treatment benefits and a new understanding of the cellular and molecular mechanisms underlying those benefits. This review will first discuss the clinical evidence for the use of thyroid hormones as a cardioprotective agent and then provide an overview of the cellular and molecular mechanisms underlying beneficial changes from thyroid hormone treatment of heart diseases. © 2016 American Physiological Society. Compr Physiol 6:1199-1219, 2016.
Small BODIPY Probes for Combined Dual (19) F MRI and Fluorescence Imaging.Monday, June 27, 2016
Huynh AM, Müller A, Kessler SM, Henrikus S, Hoffmann C, Kiemer AK, Bücker A, Jung G,
ChemMedChem. 27-Jun-2016
The combination of the two complementary imaging modalities (19) F magnetic resonance imaging (MRI) and fluorescence imaging (FLI) possesses high potential for biological and medical applications. Herein we report the first design, synthesis, dual detection validation, and cytotoxic testing of four promising BODIPY dyes for dual (19) F MRI-fluorescence detection. Using straightforward Steglich reactions, small fluorinated alcohols were easily covalently tethered to a BODIPY dye in high yields, leaving its fluorescence properties unaffected. The synthesized compounds were analyzed with various techniques to demonstrate their potential utility in dual imaging. As expected, the chemically and magnetically equivalent trifluoromethyl groups of the agents exhibited a single NMR signal. The determined longitudinal relaxation times T1 and the transverse relaxation times T2 , both in the lower second range, enabled the imaging of four compounds in vitro. The most auspicious dual (19) F MRI-fluorescence agent was also successfully imaged in a mouse post-mortem within a 9.4 T small-animal tomograph. Toxicological assays with human cells (primary HUVEC and HepG2 cell line) also indicated the possibility for animal testing.
Evaluation and optimization of the extended information process unit (E-IPU) validation module integrating the sysmex flag systems and the recommendations of the French-speaking cellular hematology group (GFHC).Monday, June 27, 2016
Cornet E, Mullier F, Despas N, Jacqmin H, Geara C, Boubaya M, Chatelain B, Troussard X,
Scandinavian journal of clinical and laboratory investigation. 27-Jun-2016
The French-Speaking Cellular Haematology Group (GFHC) recently published criteria for microscopic analysis of a blood smears when a hemogram is requested. In order to evaluate and improve these recommendations using an XN (Sysmex) analyzer, we assessed 31,836 samples categorized into two sub-groups of patients either receiving or not receiving care in the clinical hematology/oncology departments of two university hospitals. By combining the manufacturer's recommendations and the GFHC recommendations, 21.3% of samples had a positive review flag in phase 1 of our study (17,991 samples). In phase 2 (13,845 samples), increasing the immature granulocytes (IG) percentage from 5-10% as a review trigger threshold, and ignoring slides with isolated flags 'PLT HIGH' (thrombocytosis) or 'MCV LOW' (microcytosis) or 'Blast/Abn Lymph and Atypical Lymph' (blast cells/abnormal lymphocytes and atypical lymphocytes) (in the absence of abnormal cells on a previous blood smear within 72 h), enabled us to significantly reduce the number of slides reviewed from 21.3-15.0% (p < 0.0001), without loss of clinical value. This decrease occurred in both sub-groups (hematology 48.7-38.0%, non-hematology 18.3-11.7%, p < 0.0001). In conclusion, the application of the GFHC criteria adapted to XN analyzers has enabled us to optimize the hematology laboratory processes, and thus reduce the production costs and the turnaround time of hemogram results.
Impact of Afirma gene expression classifier on cytopathology diagnosis and rate of thyroidectomy.Monday, June 27, 2016
Sacks WL, Bose S, Zumsteg ZS, Wong R, Shiao SL, Braunstein GD, Ho AS,
Cancer cytopathology. 27-Jun-2016
The incidence of indeterminate FNA diagnoses significantly increased after Afirma became routinely available, whereas the incidence of benign diagnoses significantly decreased. These data suggest that Afirma may shift FNA interpretation toward Bethesda III/IV, in which molecular testing is used. Moreover, the institutional rates of surgery and malignancy did not appear to change, raising uncertainty regarding the benefits of molecular assay risk stratification. Afirma may produce unintended collateral effects, increasing the number of indeterminate FNA diagnoses while not affecting the institutional thyroidectomy rate or malignancy yield. Cancer Cytopathol 2016. © 2016 American Cancer Society.
Transformation and utilization of slowly biodegradable organic matters in biological sewage treatment of anaerobic anoxic oxic systems.Monday, June 27, 2016
Zhang QH, Jin PK, Ngo HH, Shi X, Guo WS, Yang SJ, Wang XC, Wang X, Dzakpasu M, Yang WN, Yang L,
Bioresource technology. 18-Jun-2016
This study examined the distribution of carbon sources in two anaerobic anoxic oxic (AAO) sewage treatment plants in Xi'an and investigated the transformation characteristics and utilization potential of slowly biodegradable organic matters (SBOM). Results indicated under anaerobic and aerobic conditions, SBOM could be transformed at a rate of 65% in 8h into more readily biologically utilizable substrates such as volatile fatty acids (VFAs), polysaccharides and proteins. Additionally, non-biodegradable humus-type substances which are difficult to biodegrade and readily accumulate, were also generated. These products could be further hydrolyzed to aldehyde and ketone compounds and then transformed into substances with significant oxygen-containing functional groups and utilized subsequently. The molecular weights of proteinoid substances had a wide distribution and tended to decrease over time. Long hours of microbial reaction increased the proportion of micromolecular substances. This particular increase generated significant bioavailability, which can greatly improve the efficiency of nitrogen removal.
Peroxisomes targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris.Monday, June 27, 2016
Xiao S, Gao Y, Wang X, Shen W, Wang J, Zhou X, Cai M, Zhang Y,
Preparative biochemistry & biotechnology. 27-Jun-2016
Although the human antimicrobial peptide LL37 has a broad spectrum of antimicrobial activities, it easily damages host cells following heterologous expressions. This study attempted two strategies to alleviate its damage to host cells when expressed in Pichia pastoris using the AOX1 promoter. Tandem repeat multimers of LL37 were first designed, and secretion expression strains GS115-9 K-(DPLL37DP)n (n = 2, 4, 6 and 8) containing different copies of the LL37 gene were constructed. However, LL37 tandems still killed the cells after 96 h of induction. Subsequently, peroxisome-targeted expression was performed by adding a peroxisomal targeting signal 1 (SKL) at the C-terminus of LL37. The LL37 expression strain GS115-3.5 K-LL37-SKL showed no significant inhibition in the cells after induction. Antibacterial activity assays showed that the recombinant LL37 expressed in peroxisomes had good antimicrobial activities. Then, a strain GS115-3.5 K-LL37-GFP-SKL producing LL37, green fluorescent protein and SKL fusion proteins was constructed, and the fusion protein was confirmed to be targeting the peroxisomes. However, protein extraction analysis indicated that most of the fusion proteins were still located in the cell debris after cell disruption, and further studies are required to extract more proteins from the peroxisome membrane.
Quantitative comparison of DNA methylation assays for biomarker development and clinical applications.Monday, June 27, 2016
Nature biotechnology. 27-Jun-2016
DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.
Metabolomics analysis of urine from rats administered with long-term, low-dose acrylamide by ultra-performance liquid chromatography-mass spectrometry.Monday, June 27, 2016
Shi H, Hu L, Chen S, Bao W, Yang S, Zhao X, Sun C,
Xenobiotica; the fate of foreign compounds in biological systems. 27-Jun-2016
1. To study the toxic effect of chronic exposure to acrylamide (AA) at low-dose levels, we applied metabolomics approach based on ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). A total of 40 male Wistar rats were randomly assigned to different groups: control, low-dose AA (0.2 mg/kg.bw), middle-dose AA (1 mg/kg.bw) and high-dose AA (5 mg/kg.bw). The rats continuously received AA via drinking water for 16 weeks. Rat urine samples were collected at different time points for measurement of metabolomic profiles. 2. Thirteen metabolites, including the biomarkers of AA exposure (AAMA, GAMA and iso-GAMA), were identified from the metabolomic profiles of rat urine. Compared with the control group, the treated groups showed significantly increased intensities of GAMA, AAMA, iso-GAMA, vinylacetylglycine, 1-salicylate glucuronide, PE (20:1(11Z)/14:0), cysteic acid, L-cysteine, p-cresol sulfate and 7-ketodeoxycholic acid, as well as decreased intensities of 3-acetamidobutanal, 2-indolecarboxylic acid and kynurenic acid in rat urine. Notably, three new candidate biomarkers (p-cresol sulfate, 7-ketodeoxycholic acid and 1-salicylate glucuronide) in rat urine exposed to AA have been found in this study. 3. The results indicate exposure to AA disrupts the metabolism of lipids and amino acids, induces oxidative stress.
Circulating long noncoding RNAs as novel biomarkers of human diseases.Monday, June 27, 2016
Jiang X, Lei R, Ning Q,
Biomarkers in medicine. 27-Jun-2016
Long noncoding RNAs (lncRNAs) are a kind of noncoding RNAs which are longer than ˜200 nucleotides, lacking of protein-encoding capacity and are implicated in the pathogenesis of various diseases. Recently, it was demonstrated that lncRNAs could be released into the circulation and be stable in blood. Circulating lncRNAs have been reported to have potential in distinguishing patients from healthy individuals. Therefore, the detection of circulating lncRNAs may be valuable for improving the diagnosis and prognosis of various diseases. This review summarized the current understanding of circulating lncRNAs as novel biomarkers of various human diseases, such as cancer, cardiovascular diseases, nervous system diseases and other diseases, which highlighted the significance of circulating lncRNAs as novel diagnostic and prognostic biomarkers of human diseases.
A Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.Monday, June 27, 2016
Fujita H, Kataoka Y, Tobita S, Kuwahara M, Sugimoto N,
Analytical chemistry. 27-Jun-2016
We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37°C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N3-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1 to 5,000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and/or real-time measurement technique for transcriptomic biomarkers for various diseases.
Exploring Basic Tail Modifications of Coumarin-based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-soluble, Brain-permeant Neuroprotective Multitarget Agents.Monday, June 27, 2016
Pisani L, Farina R, Catto M, Iacobazzi R, Nicolotti O, Cellamare S, Mangiatordi GF, Denora N, Soto-Otero R, Siragusa L, Altomare CD, Carotti A,
Journal of medicinal chemistry. 27-Jun-2016
Aiming at modulating two key enzymatic targets for Alzheimer's disease (AD), i.e., acetylcholinesterase (AChE) and monoamine oxidase B (MAO B), a series of multitarget ligands was properly designed by linking the 3,4-dimethylcoumarin scaffold to 1,3- and 1,4-substituted piperidine moieties, thus modulating the basicity to improve the hydrophilic/lipophilic balance. After in vitro enzymatic inhibition assays, multipotent inhibitors showing potencies in the nanomolar and in the low micromolar range for hMAO B and eeAChE, respectively, were prioritized and evaluated in human SH-SY5Y cell-based models for their cytotoxicity and neuroprotective effect against oxidative toxins (H2O2, rotenone and oligomycin-A). The present study led to the identification of a promising multitarget hit compound (5b) exhibiting high hMAO B inhibitory activity (IC50 = 30 nM) and good MAO B/A selectivity (Selectivity Index, SI = 94) along with a micromolar eeAChE inhibition (IC50 = 1.03 µM). Moreover, 5b behaves as a water-soluble, brain-permeant neuroprotective agent against oxidative insults without interacting with P-gp efflux system.
Etiology of Diarrhea, Nutritional Outcomes and Novel Intestinal Biomarkers in Tanzanian Infants: A Preliminary Study.Monday, June 27, 2016
Gosselin KB, Aboud S, McDonald CM, Moyo S, Khavari N, Manji K, Kisenge R, Fawzi W, Kellogg M, Tran HQ, Kibiki G, Gratz J, Liu J, Gewirtz A, Houpt E, Duggan C,
Journal of pediatric gastroenterology and nutrition. 24-Jun-2016
This quantitative PCR method may allow identification of enteropathogens that place children at higher risk for suboptimal growth. IgA anti-LPS and flagellin antibodies hold promise as emerging intestinal biomarkers.
Design of Biomedical Robots for Phenotype Prediction Problems.Monday, June 27, 2016
deAndrés-Galiana EJ, Fernández-Martínez JL, Sonis ST,
Journal of computational biology : a journal of computational molecular cell biology. 27-Jun-2016
Genomics has been used with varying degrees of success in the context of drug discovery and in defining mechanisms of action for diseases like cancer and neurodegenerative and rare diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-effectiveness optimization of analytical methods, especially those that translate to clinically relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis and significantly defining therapeutic targets. Biomedical robot analytics differ from historical methods in that they are based on melding feature selection methods and ensemble learning techniques. The biomedical robot mathematically exploits the structure of the uncertainty space of any classification problem conceived as an ill-posed optimization problem. Given a classifier, there exist different equivalent small-scale genetic signatures that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the biomedical robot concept using synthetic microarrays perturbed by different kinds of noises in expression and class assignment. Finally, we show the application of this concept to the analysis of different diseases, inferring the pathways and the correlation networks. The final aim of a biomedical robot is to improve knowledge discovery and provide decision systems to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical robots are robust against different kinds of noises and particularly to a wrong class assignment of the samples. Assessing the uncertainty that is inherent to any phenotype prediction problem is the right way to address this kind of problem.
Unmet Needs for a Rapid Diagnosis of Chikungunya Virus Infection.Monday, June 27, 2016
Burdino E, Calleri G, Caramello P, Ghisetti V,
Emerging infectious diseases. 15-Oct-2016
Rapid Diagnosis of Chikungunya Virus Infection.
A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study.Monday, June 27, 2016
Paul Friedman K, Papineni S, Marty MS, Yi KD, Goetz AK, Rasoulpour RJ, Kwiatkowski P, Wolf DC, Blacker AM, Peffer RC,
Critical reviews in toxicology. 27-Jun-2016
The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.
Stress, COMT Polymorphisms, and Depressive Symptoms in Older Australian Women: An Exploratory Study.Monday, June 27, 2016
Seib C, Whiteside E, Voisey J, Lee K, Alexander K, Humphreys J, Chopin L, Anderson D,
Genetic testing and molecular biomarkers. 27-Jun-2016
Our research suggests that women with polymorphisms in COMT were less susceptible to depressive symptoms but these polymorphisms do not appear to influence susceptibility to depression in those exposed to life stressors. Further research should consider other genetic variants in catecholamine pathways and their potential impact on women's mental health.
Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness.Monday, June 27, 2016
Calhoun VD, Sui J,
Biological psychiatry : cognitive neuroscience and neuroimaging. May-2016
It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness.
Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells.Monday, June 27, 2016
Warner SG, Haddad D, Au J, Carson JS, O'Leary MP, Lewis C, Monette S, Fong Y,
Molecular therapy oncolytics. 2016
Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection.
The Critical Role of the Cytoskeleton in the Pathogenesis of Giardia.Monday, June 27, 2016
Nosala C, Dawson SC,
Current clinical microbiology reports. Dec-2015
Giardia lamblia is a flagellated parasite of the gut and causes significant morbidity worldwide. Novel druggable targets are sorely needed due to Giardia's prevalence and the growing threat of antibiotic resistance. Giardia's conserved and unique cytoskeletal features, such as its eight flagella and ventral disc, are required for host colonization by facilitating motility, attachment, and cell division. Therapies that target these processes could interfere with trophozoite colonization, reduce the time or severity of the infection, and reduce the number of infectious cysts shed into the environment. This requires vetting and prioritizing critical cellular processes and identifying specific Giardia proteins in those processes as targets. It is time to leverage the wealth of data gathered through genome sequencing and proteomic studies, and new insights on the cytoskeleton of Giardia to design effective new drugs to treat giardiasis.
Weak cation exchange magnetic beads coupled with matrix-assisted laser desorption ionization-time of flight-mass spectrometry in screening serum protein markers in osteopenia.Monday, June 27, 2016
He WT, Liang BC, Shi ZY, Li XY, Li CW, Shi XL,
SpringerPlus. 2016
The present study aimed at investigating the weak cation magnetic separation technology and matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) in screening serum protein markers of osteopenia from ten postmenopausal women and ten postmenopausal women without osteopenia as control group, to find a new method for screening biomarkers and establishing a diagnostic model for primary type I osteoporosis. Serum samples were collected from postmenopausal women with osteopenia and postmenopausal women with normal bone mass. Proteins were extracted from serum samples by weak cation exchange magnetic beads technology, and mass spectra acquisition was done by MALDI-TOF-MS. The visualization and comparison of data sets, statistical peak evaluation, model recognition, and discovery of biomarker candidates were handled by the proteinchip data analysis system software(ZJU-PDAS). The diagnostic models were established using genetic arithmetic based support vector machine (SVM). The SVM result with the highest Youden Index was selected as the model. Combinatorial Peaks having the highest accuracy in distinguishing different samples were selected as potential biomarker. From the two group serum samples, a total of 133 differential features were selected. Ten features with significant intensity differences were screened. In the pair-wise comparisons, processing of MALDI-TOF spectra resulted in the identification of ten differential features between postmenopausal women with osteopenia and postmenopausal women with normal bone mass. The difference of features by Youden index showed that the highest features had a mass to charge ratio of 1699 and 3038 Da. A diagnosis model was established with these two peaks as the candidate marker, and the specificity of the model is 100 %, the sensitivity was 90 % by leave-one-out cross validation test. The two groups of specimens in SVM results on the scatter plot could be clearly distinguished. The peak with m/z 3038 in the SVM model was suggested as Secretin by TagIdent tool. To provide further validation, the secretin levels in serum were analyzed using enzyme-linked immunosorbent assays that is a competitive inhibition enzyme immunoassay technique for the in vitro quantitative measurement of secretin in human serum.
Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis.Monday, June 27, 2016
Tang N, Zhang Y, Liu Z, Fu T, Liang Q, Ai X,
Biomedical reports. Jul-2016
The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants.
Effects of the Sijunzi decoction on the immunological function in rats with dextran sulfate-induced ulcerative colitis.Monday, June 27, 2016
Yu W, Lu B, Zhang H, Zhang Y, Yan J,
Biomedical reports. Jul-2016
The present study investigated the effects of the Sijunzi decoction (SJZD) at various dosages on the immunological function of rats with 3% dextran sulfate sodium (DSS; molecular weight 5,000)-induced ulcerative colitis (UC). A total of 40 male Wistar rats were randomly divided into 5 groups: Normal, model, low-dose SJZD, moderate-dose SJZD and high-dose SJZD groups. The 3% DSS was intragastrically administered for 7 consecutive days in order to induce the UC model. The normal group consumed distilled water. Subsequently, SJZD (5.0, 10.0 and 30.0 g/kg) was intragastrically administered, and scores of the disease activity index (DAI) were calculated. After 2 weeks, all the rats were sacrificed. Scores of the colon mucosa damage index (CMDI) were evaluated; and secretory immunoglobulin A (sIgA) and interleukin-2 (IL-2) were measured in intestinal tissue by ELISA assays. The model group rats had ulcers, hyperemia and interstitial edema and infiltrated inflammatory cells. SJZD attenuated the severity of the gross lesions and reduced the histopathological injuries. Compared with the normal group, DAI and CMDI were significantly increased (P<0.01), and levels of determined sIgA in the intestinal mucosa and IL-2 in the intestinal tissue were significantly decreased (P<0.05) in the model group. Compared with the model group, moderate and high doses of SJZD showed a restoration effect on all the aforementioned indexes, and the high dose was the most effective. In conclusion, SJZD can ameliorate inflammation in DSS-induced UC rats. The mechanism is most likely due to enhancing intestinal local immunity.
Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma.Monday, June 27, 2016
Wang D, Wang C, Pi X, Guo L, Wang Y, Li M, Feng Y, Lin Z, Hou W, Li E,
Biomedical reports. Jul-2016
Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC.
Mechanism of chlorogenic acid treatment on femoral head necrosis and its protection of osteoblasts.Monday, June 27, 2016
Zhang M, Hu X,
Biomedical reports. Jul-2016
The aim of the present study was to investigate the therapeutic effect of chlorogenic acid on hormonal femoral head necrosis and its protection of osteoblasts. The study established a femoral head necrosis model in Wistar rats using Escherichia coli endotoxin and prednisolone acetate. The rats were divided into five groups and were treated with different concentrations of chlorogenic acid (1, 10 and 20 mg/kg). The main detected indicators were the blood rheology, bone mineral density, and the hydroxyproline and hexosamine (HOM) contents. At a cellular level, osteoblasts were cultured and treated by drug-containing serum. Subsequently, cell proliferation and the osteoblast cycle were measured using flow cytometry, and the protein expression levels of Bax and B-cell lymphoma 2 (Bcl-2) were detected using western blotting. Chlorogenic acid at a concentration of 20 mg/kg (high-dose) enhanced the bone mineral density of the femoral head and femoral neck following ischemia. Simultaneously, blood flow following the injection of prednisolone acetate was significantly improved, and the HOM contents of the high-dose chlorogenic acid group were significantly different. The results from the flow cytometry analysis indicated that chlorogenic acid can efficiently ameliorate hormone-induced necrosis. The osteoblasts were isolated and cultured. The MTT colorimetric assay showed that chlorogenic acid at different densities can increase the proliferation capabilities of osteoblasts and accelerate the transition process of G0/G1 phase to S phase, as well as enhance mitosis and the regeneration of osteoblasts. Western blotting detection indicated that chlorogenic acid may prohibit the decrease of Bcl-2 and the increase of Bax during apoptosis, thereby inhibiting osteoblast apoptosis and preventing the deterioration of femoral head necrosis. In conclusion, chlorogenic acid at the density of 20 mg/kg is effective in the treatment of hormonal femoral head necrosis, which may be applicable for future treatment.
Proteomic analysis of cerebrospinal fluid for relapsing-remitting multiple sclerosis and clinically isolated syndrome.Monday, June 27, 2016
Pavelek Z, Vyšata O, Tambor V, Pimková K, Vu DL, Kuča K, Šťourač P, Vališ M,
Biomedical reports. Jul-2016
Early diagnosis and treatment of multiple sclerosis (MS) in the initial stages of the disease can significantly retard its progression. The aim of the present study was to identify changes in the cerebrospinal fluid proteome in patients with relapsing-remitting MS and clinically isolated MS syndrome who are at high risk of developing MS (case group) compared to healthy population (control) in order to identify potential new markers, which could ultimately aid in early diagnosis of MS. The protein concentrations of each of the 11 case and 15 control samples were determined using a bicinchoninic acid assay. Nanoscale liquid chromatography coupled with tandem mass spectrometry was used for protein identification. Proteomics data were processed using the Perseus software suite and R. The results were filtered using the Benjamini-Hochberg procedure for the false discovery rate (FDR) correction (FDR<0.05). The results showed that, 26 proteins were significantly dysregulated in case samples compared to the controls. Nine proteins were found to be significantly less abundant in case samples, while the abundance of 17 proteins was significantly increased in case samples compared to controls. Three of the proteins were previously linked to RR MS, including immunoglobulin (Ig) γ-1 chain C region, Ig heavy chain V-III region BRO and Ig κ chain C region. Three proteins that were uniquely expressed in patients with RR MS were identified and these proteins may serve as prognostic biomarkers for identifying patients with a high risk of developing RR MS.
Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway.Monday, June 27, 2016
Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, Yang T,
American journal of translational research. 2016
We confirm that adenosine plays significant roles in the high expression of Foxp3. Adenosine promotes Foxp3 expression in Treg cells during sepsis via JNK/AP-1 pathway.
OTUB1 promotes tumor invasion and predicts a poor prognosis in gastric adenocarcinoma.Monday, June 27, 2016
Weng W, Zhang Q, Xu M, Wu Y, Zhang M, Shen C, Chen X, Wang Y, Sheng W,
American journal of translational research. 2016
OTUB1 contributes to gastric cancer development by enhancing tumor invasiveness. Targeting OTUB1 should be considered in future molecular therapies.
Substance P induces inflammatory responses involving NF-κB in genetically diabetic mice skin fibroblasts co-cultured with macrophages.Monday, June 27, 2016
Ni T, Liu Y, Peng Y, Li M, Fang Y, Yao M,
American journal of translational research. 2016
The promoting effects of SP on diabetic wound healing was dependent on enhanced inflammatory responses, especially the activation of NF-κB. This study provided evidence for the potential usage of SP in accelerating diabetic wound healing.
Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis.Monday, June 27, 2016
Chen J, Jing J, Yu S, Song M, Tan H, Cui B, Huang L,
American journal of translational research. 2016
Elevated levels of advanced glycation endproducts (AGEs) is an important risk factor for atherosclerosis. Dysfunction of endothelial progenitor cells (EPCs), which is essential for re-endothelialization and neovascularization, is a hallmark of atherosclerosis. However, it remains unclear whether and how AGEs acts on EPCs to promote pathogenesis of atherosclerosis. In this study, EPCs were exposed to different concentrations of AGEs. The expression of NADPH and Rac1 was measured to investigate the involvement of NADPH oxidase pathway. ROS was examined to indicate the level of oxidative stress in EPCs. Total JNK and p-JNK were determined by Western blotting. Cell apoptosis was evaluated by both TUNEL staining and flow cytometry. Cell proliferation was measured by (3)H thymidine uptake. The results showed that treatment of EPCs with AGEs increased the levels of ROS in EPCs. Mechanistically, AGEs increased the activity of NADPH oxidase and the expression of Rac1, a major component of NADPH. Importantly, treatment of EPCs with AGEs activated the JNK signaling pathway, which was closely associated with cell apoptosis and inhibition of proliferation. Our results suggest that the RAGE activation by AGEs in EPCs upregulates intracellular ROS levels, which contributes to increased activity of NADPH oxidase and expression of Rac1, thus promoting cellular apoptosis and inhibiting proliferation. Mechanistically, AGEs binding to the receptor RAGE in EPCs is associated with hyperactivity of JNK signaling pathway, which is downstream of ROS. Our findings suggest that dysregulation of the AGEs/RAGE axis in EPCs may promote atherosclerosis and identify the NADPH/ROS/JNK signaling axis as a potential target for therapeutic intervention.
Tumor-suppressive microRNA-195-5p regulates cell growth and inhibits cell cycle by targeting cyclin dependent kinase 8 in colon cancer.Monday, June 27, 2016
Luo Q, Zhang Z, Dai Z, Basnet S, Li S, Xu B, Ge H,
American journal of translational research. 2016
MicroRNAs (miRNAs) are key regulators in gene expression. Dysregulation of them in cancer development have been attracting increasing attention. The purpose of this study was to investigate the potential role of miR-195-5p in colon cancer (CC) biology. Expression of miR-195-5p in CC specimens and adjacent normal tissues were measured by quantitative polymerase chain reaction (qPCR). Overexpression of miR-195-5p was established by transfecting mimics into SW480 CC cells. Following, MTT assays, wound healing assays, invasion assays and cell cycle assays were used to explore the potential function of miR-195-5p in SW480 cells. Dual-luciferase reporter assays were performed to validate the regulation of a putative target of miR-195-5p, in corroboration with qPCR and western blot assays. The expression of miR-195-5p in CC specimens was significantly lower than that of adjacent normal tissues (P < 0.05). Overexpression of miR-195-5p inhibited cellular growth, suppressed cellular migration and invasion, and led to cell cycle arrest at G1 phase in vitro. Dual-luciferase reporter assays showed that miR-195-5p binds the 3'-untranslated region (UTR) of CDK8, suggesting that CDK8 should be a direct target of miR-195-5p. Moreover, qPCR and western blot assays confirmed CDK8 mRNA and protein levels were reduced after overexpression of miR-195-5p. These findings are supportive of miR-195-5p as a novel tumor suppressor in CC, thus may serve as a new strategy for cancer treatment.
Rat adipose-derived stem cells express low level of α-Gal and are dependent on CD59 for protection from human xenoantibody and complement-mediated lysis.Monday, June 27, 2016
Jia Y, Zhao Y, Wang L, Xiang Y, Chen S, Ming CS, Wang CY, Chen G,
American journal of translational research. 2016
Since increasing evidence has indicated that adipose-derived stem cells (ASCs) can function across the species barrier, the use of xenogeneic ASCs may be a practical alternative to the autotransplantation and allotransplantation. Before animal ASCs can be used clinically, evidence needs to be provided to indicate whether they will survive in a human host. In the present study, we investigated whether rat ASCs (rASCs) could resist human xenoantibody and complement-mediated lysis as well as investigated the possible mechanisms involved. We found that rASCs could significantly resist human natural antibody and complement-mediated cytotoxicity when incubated with 20% or 50% normal human serum (NHS) in vitro, as compared with rat lymphocytes (rLCs). Mechanistically, rASCs expressed lower level of xenoantigen Galα1-3Galβ1-4GlcNAc (α-Gal), which was correlated with decreased binding of human xenoreactive IgG and IgM and reduced deposition of complement C3c and C4c. More interestingly, rASCs had minimal deposition of human membrane attack complex (C5b-9). When the expression of CD55 and CD59 was analyzed by flow cytometry, we found that rASCs expressed very weak CD55 but expressed much higher level of CD59 than rLCs. Moreover, the knockdown of CD59 expression by siRNA largely reversed the resistance of rASCs to the human serum-mediated lysis. Taken together, these data have demonstrated for the first time that rat ASCs are capable to protect themselves from human xenoantibody and complement-mediated lysis, which is dependent on CD59 and is correlated with low expression of α-Gal. Xenogenic ASCs may have the potential to treat patients in the future.
Up-regulation of long non-coding HOTTIP functions as an oncogene by regulating HOXA13 in non-small cell lung cancer.Monday, June 27, 2016
Sang Y, Zhou F, Wang D, Bi X, Liu X, Hao Z, Li Q, Zhang W,
American journal of translational research. 2016
Non-small cell lung cancer (NSCLC) is the major cause of cancer death worldwide. Increasing evidences show that long non coding RNAs (lncRNAs) are widely involved in the development and progression of NSCLC. The lncRNA HOTTIP has been identified as an oncogene in several human cancers, but its role in NSCLC remains unknown. The present study was to determine the expression and function of HOTTIP in NSCLC. Quantitative real-time PCR was used to detect the expressions of HOTTIP in 53 paired NSCLC tissues and cell lines. Furthermore, RNA interference (RNAi) and over-expression approaches were used to investigate the biological function of HOTTIP in lung cancer cell line. The impacts of HOTTIP on cell migration, proliferation and apoptosis were analyzed using wound scratch assay, MTT and flow cytometry, respectively. The results revealed that the HOTTIP expression was significantly up-regulated in NSCLC tissues and cells when compared with corresponding adjacent normal tissues and normal bronchial epithelial cells (p<0.05). Furthermore, knock-down of HOTTIP significantly inhibited cell proliferation, migration and induced cell apoptosis in vitro, while over-expression of HOTTIP led to the opposite effects. In addition, we identified HOTTIP as a transcriptional regulator of HOXA13 in lung cancer cell. Ectopic expression of HOTTIP suppressed the endogenous level of HOXA13, while knock-down of HOTTIP increased HOXA13 expression. Knock-down of HOXA13 by RNA interference (siHOXA13) revealed that HOTTIP promoted lung cell proliferation, migration, and inhibited apoptosis, at least partly by regulating HOXA13. The present study is the first to identify that HOTTIP functions as an oncogene by regulating HOXA13 in NSCLC, which may represent a new biomarker and a potential therapeutic target for NSCLC intervention.
Alternating Periods of High and Low-Entropy Neural Ensemble Activity During Image Processing in the Primary Visual Cortex of Rats.Monday, June 27, 2016
Li X, Li Q, Shi L, Jiao L,
The open biomedical engineering journal. 2016
The response properties of individual neurons in the primary visual cortex (V1) are among the most thoroughly described in the mammalian central nervous system, but they reveal less about higher-order processes like visual perception. Neural activity is highly nonlinear and non-stationary over time, greatly complicating the relationships among the spatiotemporal characteristics of visual stimuli, local field potential (LFP) signal components, and the underlying neuronal activity patterns. We applied discrete wavelet transformation to detect new features of the LFP that may better describe the association between visual input and neural ensemble activity. The relative wavelet energy (RWE), wavelet entropy (WS), and the mean WS were computed from LFPs recorded in rat V1 during three distinct visual stimuli: low ambient light, a uniform grey computer screen, and simple pictures of common scenes. The time evolution of the RWE within the γ band (31-62.5 Hz) was the dominant component over certain periods during visual stimulation. Mean WS decreased with increasing complexity of the visual image, and the time-dependent WS alternated between periods of highly ordered and disordered population activity. In conclusion, these alternating periods of high and low WS may correspond to different aspects of visual processing, such as feature extraction and perception.
Concerted changes in transcriptional regulation of genes involved in DNA methylation, demethylation, and folate-mediated one-carbon metabolism pathways in the NCI-60 cancer cell line panel in response to cancer drug treatment.Monday, June 27, 2016
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R,
Clinical epigenetics. 2016
These transcriptional changes are likely to influence vital cellular functions of DNA methylation and demethylation, cellular growth, DNA biosynthesis, and DNA repair, and some of them may contribute to cytotoxic and apoptotic action of the drugs. This concerted molecular response was observed in a time-dependent manner, which may provide future guidelines for temporal selection of genetic drug targets for combination drug therapy treatment regimens.
Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment.Monday, June 27, 2016
Zhang J, Sun D, Fu Q, Cao Q, Zhang H, Zhang K,
Oncology letters. Jul-2016
The aim of the present study was to investigate the tropism of mesenchymal stem cells (MSCs) to the tumor microenvironment, and to evaluate the feasibility of bone marrow mesenchymal stem cells differentiating into myofibroblasts in vitro. A total of 1 ml bone marrow was extracted from the greater trochanter of one male New Zealand rabbit, and MSCs were obtained by density gradient centrifugation and cultured routinely. The surface markers were analyzed by flow cytometry. A VX2 tumor was aseptically excised from another male New Zealand rabbit and primary cultured. The tropism of MSCs for 30% and 50% VX2 conditioned medium was determined by using Transwell migration assays. MSCs were incubated in 30% VX2 conditioned medium for 7 or 14 days. The messenger (m)RNA levels and protein expression of α-smooth muscle actin (α-SMA) and vimentin were measured by reverse transcription-polymerase chain reaction and western blotting. MSCs were observed to have a spindle shape. The cultured MSCs were cluster of differentiation (CD)44(+), CD105(+), CD106(+) and CD34(-). VX2 cells demonstrated a spindle or polygon shape. In the Transwell assay, it was observed that the migrated cells appeared more frequently in the 30% VX2 conditioned medium group compared with the other groups when microscopically examined, which was additionally confirmed by the results of a colorimetric assay. The mRNA levels and protein expression of α-SMA and vimentin significantly increased in the test group compared with the control group at 7 days (P<0.01), and further increased in the test group at 14 days (P<0.01). The results of the present study demonstrated that MSCs have tropism for the tumor microenvironment and furthermore, may differentiate into myofibroblasts in the tumor microenvironment in vitro. The present study suggested that MSCs may migrate to the tumor and subsequently differentiate into myofibroblasts due to the tumor microenvironment, which may lead to promotion of the growth of the tumor. The present study additionally suggested that MSCs may be the precursors of tumor/carcinoma-associated myofibroblasts.
Protein expression of nucleophosmin, annexin A3 and nm23-H1 correlates with human nasopharyngeal carcinoma radioresistance in vivo.Monday, June 27, 2016
Qu S, Li XY, Liang ZG, Li L, Huang ST, Li JQ, Li DR, Zhu XD,
Oncology letters. Jul-2016
Radioresistance is a significant obstacle in the treatment of endemic nasopharyngeal carcinoma (NPC). The present study aimed to identify proteins associated with radioresistance in NPC in vitro and in vivo. Proteomics analyses were conducted to screen for differentially-expressed proteins (DEPs) in parental CNE-2 cells and CNE-2R cells. Using proteomics approaches, 16 DEPs were identified. Of these DEPs, nucleophosmin (NPM1), annexin A3 and nm23-H1, were verified using western blot analyses. The tumorigenicity was investigated using mouse xenograft tumorigenicity assays, and tumor growth curves were generated. The protein expression of NPM1, annexin A3 and nm23-H1 was examined by immunohistochemically staining tumor tissues. NPM1 and annexin A3 protein levels were downregulated in the CNE-2R cells, whereas nm23-H1 expression was upregulated. In vivo tests showed that compared with the CNE-2 tumors, CNE-2R tumor growth was significantly retarded (P<0.05). CNE-2 tumor progression was inhibited by irradiation, but CNE-2R tumor progression was not, indicating that the CNE-2R cells were also radioresistant in vivo. NPM1 and annexin A3 expression was significantly lower in non-irradiated (NIR)-CNE-2R tumors compared with NIR-CNE-2 tumors (P<0.01). However, Nm23-H1 protein levels were significantly higher (P<0.05). Overall, the present study established comparable radioresistant and radiosensitive tumor models of human NPC, and identified candidate biomarkers that may correlate with radioresistance. The data showed that dysregulation of NPM1, annexin A3 and nm23-H1 expression correlated with the cellular and tumor radioresponse. These proteins are involved in the regulation of intracellular functions, including stress responses, cell proliferation and DNA repair. However, further clinical evaluations are required.
Characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression.Monday, June 27, 2016
Luo Y, Zhu YT, Ma LL, Pang SY, Wei LJ, Lei CY, He CW, Tan WL,
Oncology letters. Jul-2016
The aim of the present study was to examine the characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression. An immunofluorescence assay was used to detect E-cadherin and N-cadherin expression in infiltrative bladder cancer tissues, and immunofluorescence and western blot analysis were used to detect E-cadherin and N-cadherin expression in human urinary bladder grade II carcinoma 5637, transitional cell carcinoma UMUC-3 and invasive bladder carcinoma EJ cells. Cell proliferation, migration, invasion and plate colony formation assays were used to detect the proliferative, migratory and invasive abilities and the efficiency of plate colony formation of 5637, UMUC3 and EJ cells. A tumor xenograft formation assay was used to evaluate the tumorigenic abilities of 5637, UMUC-3 and EJ cells in vivo. E-cadherin and N-cadherin double-negative expression was identified in various pathological grades of infiltrative bladder cancers. E-cadherin positive and N-cadherin negative expression was exhibited by 5637 cells. By contrast, E-cadherin negative and N-cadherin positive expression was exhibited by EJ cells, and E-cadherin and N-cadherin double-negative expression was exhibited by UMUC-3 cells. The ability of cells to proliferate, migrate, invade, and the efficiency of plate colony formation and tumorigenic abilities of the cells were significantly different among 5637, UMUC-3 and EJ cells. These cell characteristics were significantly increased in UMUC-3 cells compared with 5637 cells; however, the characteristics were significantly decreased compared with EJ cells. The biological characteristics of bladder cancer cells with E-cadherin and N-cadherin double-negative expression was between bladder cancer cells that exhibited a E-cadherin positive and N-cadherin negative expression, and bladder cancer cells that exhibited E-cadherin negative and N-cadherin positive expression. The present study deduces that the status of E-cadherin and N-cadherin double-negative expression may participate in the process of epithelial-mesenchymal transition in the pathogenesis of bladder urothelial carcinoma.
Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells.Monday, June 27, 2016
Zhou J, Li LU, Fang LI, Xie H, Yao W, Zhou X, Xiong Z, Wang LI, Li Z, Luo F,
Oncology letters. Jul-2016
Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo.
Investigation of potential molecular biomarkers and small molecule drugs for hepatocellular carcinoma transformed from cirrhosis.Monday, June 27, 2016
Xie F, Zhu F, Lu Z, Liu Z, Wang H,
Oncology letters. Jul-2016
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China and the third leading cause of cancer-associated morality. The aim of the present study was to investigate and analyze differentially-expressed genes (DEGs) between cirrhosis and HCC, in order to screen the key genes involved in the transformation from cirrhosis to HCC and provide novel targets for the diagnosis and treatment of HCC in patients with cirrhosis. The gene expression profile, GSE17548, was obtained from Gene Expression Omnibus database and the DEGs were identified by LIMMA package in R language. Kyoto Encyclopedia of Genes and Genomes and gene ontology biology process analysis were performed for the DEGs. Differential co-expression network (DEN) analysis was conducted and the network was visualized using Cytoscape. Small molecule drugs were also screened from the Comparative Toxicogenomics Database for higher degree DEGs. A total of 95 DEGs were obtained, including 46 upregulated and 49 downregulated genes. The upregulated DEGs were primarily involved in biological processes and pathways associated with the cell cycle, while the downregulated DEGs were primarily involved in immune-associated biological processes. A total of 22 key DEGs were identified by DEN analysis, which distinguished HCC from cirrhosis samples. Furthermore, estradiol, benzo(a)pyrene, acetaminophen, copper sulfate and bisphenol A were identified as the five most associated chemicals to these 22 DEGs. In conclusion, the hub genes and chemicals identified by the present study may provide a theoretical basis for additional research on diagnosis and treatment of HCC transformed from cirrhosis.
Power of PTEN/AKT: Molecular switch between tumor suppressors and oncogenes.Monday, June 27, 2016
Xie Y, Naizabekov S, Chen Z, Tokay T,
Oncology letters. Jul-2016
An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy.
Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia.Monday, June 27, 2016
Song K, Li M, Xu X, Xuan LI, Huang G, Liu Q,
Oncology letters. Jul-2016
Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML.
A novel combination treatment for breast cancer cells involving BAPTA-AM and proteasome inhibitor bortezomib.Monday, June 27, 2016
Yerlikaya A, Erdoğan E, Okur E, Yerlikaya Ş, Savran B,
Oncology letters. Jul-2016
Glucose-regulated protein 78 kDa/binding immunoglobulin protein (GRP78/BIP) is a well-known endoplasmic reticulum (ER) chaperone protein regulating ER stress by facilitating protein folding, assembly and Ca(2+) binding. GRP78 is also a member of the heat shock protein 70 gene family and induces tumor cell survival and resistance to chemotherapeutics. Bortezomib is a highly specific 26S proteasome inhibitor that has been approved as treatment for patients with multiple myeloma. The present study first examined the dose- and time-dependent effects of bortezomib on GRP78 expression levels in the highly metastatic mouse breast cancer 4T1 cell line using western blot analysis. The analysis results revealed that GRP78 levels were significantly increased by bortezomib at a dose as low as 10 nM. Time-dependent experiments indicated that the accumulation of GRP78 was initiated after a 24 h incubation period following the addition of 10 nM bortezomib. Subsequently, the present study determined the half maximal inhibitory concentration of intracellular calcium chelator BAPTA-AM (13.6 µM) on 4T1 cells. The combination effect of BAPTA-AM and bortezomib on the 4T1 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and WST-1 assays and an iCELLigence system. The results revealed that the combination of 10 nM bortezomib + 5 µM BAPTA-AM is more cytotoxic compared with monotherapies, including 10 nM bortezomib, 1 µM BAPTA-AM and 5 µM BAPTA-AM. In addition, the present results revealed that bortezomib + BAPTA-AM combination causes cell death through the induction of apoptosis. The present results also revealed that bortezomib + BAPTA-AM combination-induced apoptosis is associated with a clear increase in the phosphorylation of stress-activated protein kinase/Jun amino-terminal kinase SAPK/JNK. Overall, the present results suggest that bortezomib and BAPTA-AM combination therapy may be a novel therapeutic strategy for breast cancer treatment.
Serum expression levels of microRNA-382-3p, -598-3p, -1246 and -184 in breast cancer patients.Monday, June 27, 2016
Fu L, Li Z, Zhu J, Wang P, Fan G, Dai Y, Zheng Z, Liu Y,
Oncology letters. Jul-2016
The purpose of the present study was to investigate the serum levels of microRNA (miRNA/miR)-382-3p, -598-3p, -1246 and -184 in breast cancer patients and to assess their feasibility as biomarkers for breast cancer screening. Serum samples were obtained from 100 breast cancer patients and 40 age-matched healthy control subjects in Taizhou Central Hospital (Taizhou, Zhejiang, China) between January 2013 and September 2014. The serum expression levels of miR-382-3p, -598-3p, -1246 and -184 were determined by stem-loop reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic curves were drawn to evaluate the sensitivity and specificity of the serum miRNA expression levels for the screening of breast cancer. miR-382-3p and -1246 were significantly upregulated in the serum of the breast cancer patients, while miR-598-3p and -184 were significantly downregulated. The sensitivity and specificity to detect breast cancer were as follows: miR-382-3p, 52.0 and 92.5%; miR-598-3p, 95.0 and 85.0%; miR-1246, 93.0 and 75.0%; and miR-184, 87.5 and 71.0%, respectively. The expression levels of the four serum miRNAs were not correlated with the patients' clinical stage. In summary, miR-382-3p, -598-3p, -1246 and -184 are all involved in the development of breast cancer, and are promising biomarkers for breast cancer detection.
Downregulation of SENP1 inhibits cell proliferation, migration and promotes apoptosis in human glioma cells.Monday, June 27, 2016
Zhang QS, Zhang M, Huang XJ, Liu XJ, Li WP,
Oncology letters. Jul-2016
Small ubiquitin-related modifier protein (SUMO) is an evolutionarily conserved protein in a broad range of eukaryotic organisms. De-SUMOylation, the reverse reaction of SUMOylation, is regulated by a family of SUMO-specific proteases (SENPs). SENP1 is a member of the de-SUMOylation protease family involved in the de-SUMOylation of a variety of SUMOylated proteins. The present study demonstrates that small hairpin RNA (shRNA)-mediated downregulation of SENP1 inhibits cell proliferation and migration, and promotes apoptosis in human glioma cells. Firstly, LN-299 cells were transfected with a plasmid expressing SENP1 shRNA (pGenesil-1-SENP1). The messenger RNA and protein expression of SENP1 was detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation in vitro was assessed using a methyl thiazolyl tetrazolium assay. Flow cytometry (FCM) was used to detect the apoptosis of LN-299 cells. The effect of the downregulation of SENP1 on cell migration was detected by a Transwell migration system. The present results showed that, compared with the control shRNA group, the expression of SENP1 was significantly reduced in the SENP1 shRNA group. The proliferation was markedly inhibited in the SENP1 shRNA group. FCM findings revealed that apoptosis increased significantly in the SENP1 shRNA group. In addition, it was found that downregulation of SENP1 evidently suppressed tumor cell migration. Downregulation of SENP1 expression inhibited the proliferation and migration and promoted apoptosis in LN-299 cells. These results indirectly demonstrate that SENP1 is likely to play a critical role in human glioma cells.
A comparison of four methods for detecting KRAS mutations in formalin-fixed specimens from metastatic colorectal cancer patients.Monday, June 27, 2016
Matsunaga M, Kaneta T, Miwa K, Ichikawa W, Fujita KI, Nagashima F, Furuse J, Kage M, Akagi Y, Sasaki Y,
Oncology letters. Jul-2016
There is currently no standard method for the detection of Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation status in colorectal tumors. In the present study, we compared the KRAS mutation detection ability of four methods: direct sequencing, Scorpion-ARMS assaying, pyrosequencing and multi-analyte profiling (Luminex xMAP). We evaluated 73 cases of metastatic colorectal cancer (mCRC) resistant to irinotecan, oxaliplatin and fluoropyrimidine that were enrolled in an all-case study of cetuximab. The KRAS mutation detection capacity of the four analytical methods was compared using DNA samples extracted from tumor tissue, and the detection success rate and concordance of the detection results were evaluated. KRAS mutations were detected by direct sequencing, Scorpion-ARMS assays, pyrosequencing and Luminex xMAP at success rates of 93.2%, 97.3%, 95.9% and 94.5%, respectively. The concordance rates of the detection results by Scorpion-ARMS, pyrosequencing and Luminex xMAP with those of direct sequencing were 0.897, 0.923 and 0.900 (κ statistics), respectively. The direct sequencing method could not determine KRAS mutation status in five DNA samples. Of these, Scorpion-ARMS, pyrosequencing and Luminex xMAP successfully detected three, two and one KRAS mutation statuses, respectively. Three cases demonstrated inconsistent results, whereby Luminex xMAP detected mutated KRAS in two samples while wild-type KRAS was detected by the other methods. In the remaining case, direct sequencing detected wild-type KRAS, which was identified as mutated KRAS by the other methods. In conclusion, we confirmed that Scorpion-ARMS, pyrosequencing and Luminex xMAP were equally reliable in detecting KRAS mutation status in mCRC. However, in rare cases, the KRAS status was differentially diagnosed using these methods.
Source: NCBI - Disclaimer and Copyright notice
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!