Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mitochondrial Dysfunction Present Early in Alzheimer’s, Before Memory Loss

Published: Thursday, March 01, 2012
Last Updated: Thursday, March 01, 2012
Bookmark and Share
Using genetic mouse models, Mayo Clinic researchers have discovered that mitochondria in the brain are dysfunctional early in the disease.

Mitochondria — subunits inside cells that produce energy — have long been thought to play a role in Alzheimer’s disease.

The group looked at mitochondria in three mouse models, each using a different gene shown to cause familial, or early-onset, Alzheimer’s disease. The specific mitochondria changes corresponded with the mutation type and included altered mitochondrial movement, structure, and energy dynamics. The changes happened in the brain even before the mice showed any symptoms such as memory loss. The group also found that the mitochondrial changes contributed to the later loss of mitochondrial function and the onset and progression of Alzheimer’s disease.

“One of the most significant findings of this study is our discovery of the impact of mitochondrial dysfunction in Alzheimer’s disease,” says Eugenia Trushina, Ph.D., Mayo Clinic pharmacologist and senior investigator on the study. “We are asking: Can we connect the degree of mitochondrial dysfunction with the progression of symptoms in Alzheimer’s disease?”

Enlisting the expertise of Mayo researcher Petras Dzeja, Ph.D., the team applied a relatively new method called metabolomics, which measures the chemical fingerprints of metabolic pathways in the cell — sugars, lipids, nucleotides, amino acids and fatty acids, for example. It assesses what is happening in the body at a given time and at a fine level of detail, giving scientists insight into the cellular processes that underlie a disease. In this case, the metabolomic profiles showed changes in metabolites related to mitochondrial function and energy metabolism, further confirming that altered mitochondrial energetics is at the root of the disease process.

The researchers hope that the panel of metabolomic biomarkers they discovered can eventually be used for early diagnosis, treatment, and monitoring of Alzheimer’s progression.
“We expect to validate metabolomic changes in humans with Alzheimer’s disease and to use these biomarkers to diagnose the disease before symptoms appear — which is the ideal time to start treatment,” Dr. Trushina says.

The team looked at neurons of three different genetic animal models of Alzheimer’s disease. Researchers applied a mitochondria-specific dye and observed their motion along axons, a process called axonal trafficking. They showed that even in embryonic neurons afflicted with Alzheimer’s disease, well before the mice show any memory loss, mitochondrial axonal trafficking is inhibited. Using a panel of techniques that included electron and light microscopy, they determined that in the brains of mice with Alzheimer’s disease, mitochondria tended to lose their integrity, ultimately leading to the loss of function. Importantly, dysfunctional mitochondria were detected at the synapses of neurons involved in maintaining memory.

“We are not looking at the consequences of Alzheimer’s disease, but at very early events and molecular mechanisms that lead to the disease,” Dr. Trushina says. The next step is looking at the same mitochondrial biomarkers in humans, she says. As the researchers begin to understand more about the mitochondrial dynamics that are altered in Alzheimer’s disease, they hope to move on to designing drugs that can restore the abnormal bioenergetics and mitochondrial dynamics to treat the disease.

The findings appear in the journal PLoS ONE.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mayo Clinic, UMMC Expand Relationship
Mayo Clinic and the University of Mississippi Medical Center have signed an agreement to broaden and deepen their collaboration in clinical trials, other medical research and education.
Monday, October 06, 2014
Mayo Clinic Receives Funding for Gut Function Biomarker Research
The program aims to identify and validate biomarkers that can assess gut function and guide new ways to improve the health and development of children in the developing world.
Friday, December 28, 2012
Mayo Clinic to Collaborate with Indian Science Leaders
The collaboration will cover areas such as drug, device and biomarker studies relating to heart disease, chemical biology, applied genomics and innovations in metabolomics.
Wednesday, October 19, 2011
Controlling iPS Cell Transformation: It’s in the Sugar
Researchers at Mayo Clinic show how cellular metabolism facilitates stem cell procurement from regular tissue.
Friday, September 02, 2011
Scientific News
Targeting Fat to Treat Cancer
Researchers develop novel cancer treatment that halts fat synthesis in cells, stunting tumors.
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Gut Pathogens Thrive on Body's Tissue-Repair Mechanism
Researcher have discovered that harm caused by pathogens in the intestinal tract benefit from immune system response to damaged intestinal lining.
Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
‘Tracking Bugs’ Reveal Secret of Cancer Cell Metabolism
Unexpected finding shows instead of throwing away valuable nutrients, the cells squeeze out every last drop of energy.
Ginger Nano-Lipid Particles May Improve Cancer Treatment
Edible ginger-derived nano-lipids show promise for effectively targeting and delivering chemotherapeutic drugs used to treat colon cancer.
Genetic Diversity of Enzymes Alters Metabolic Individuality
ToMMo scientists have shown that genetic polymorphisms, structural location of mutation and effect for phenotype correlate with each other.
Absolute Quantification of Mitochondrial Metabolites
Scientists have developed a method to quickly isolate and systematically measure metabolite concentrations within mitochondria.
Vitamin C May Boost Leukemia Treatment
Studies show that supplementing an epigenetic cancer drug with vitamin C enhanced the drug's effectiveness.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!