Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Mitochondrial Dysfunction Present Early in Alzheimer’s, Before Memory Loss

Published: Thursday, March 01, 2012
Last Updated: Thursday, March 01, 2012
Bookmark and Share
Using genetic mouse models, Mayo Clinic researchers have discovered that mitochondria in the brain are dysfunctional early in the disease.

Mitochondria — subunits inside cells that produce energy — have long been thought to play a role in Alzheimer’s disease.

The group looked at mitochondria in three mouse models, each using a different gene shown to cause familial, or early-onset, Alzheimer’s disease. The specific mitochondria changes corresponded with the mutation type and included altered mitochondrial movement, structure, and energy dynamics. The changes happened in the brain even before the mice showed any symptoms such as memory loss. The group also found that the mitochondrial changes contributed to the later loss of mitochondrial function and the onset and progression of Alzheimer’s disease.

“One of the most significant findings of this study is our discovery of the impact of mitochondrial dysfunction in Alzheimer’s disease,” says Eugenia Trushina, Ph.D., Mayo Clinic pharmacologist and senior investigator on the study. “We are asking: Can we connect the degree of mitochondrial dysfunction with the progression of symptoms in Alzheimer’s disease?”

Enlisting the expertise of Mayo researcher Petras Dzeja, Ph.D., the team applied a relatively new method called metabolomics, which measures the chemical fingerprints of metabolic pathways in the cell — sugars, lipids, nucleotides, amino acids and fatty acids, for example. It assesses what is happening in the body at a given time and at a fine level of detail, giving scientists insight into the cellular processes that underlie a disease. In this case, the metabolomic profiles showed changes in metabolites related to mitochondrial function and energy metabolism, further confirming that altered mitochondrial energetics is at the root of the disease process.

The researchers hope that the panel of metabolomic biomarkers they discovered can eventually be used for early diagnosis, treatment, and monitoring of Alzheimer’s progression.
“We expect to validate metabolomic changes in humans with Alzheimer’s disease and to use these biomarkers to diagnose the disease before symptoms appear — which is the ideal time to start treatment,” Dr. Trushina says.

The team looked at neurons of three different genetic animal models of Alzheimer’s disease. Researchers applied a mitochondria-specific dye and observed their motion along axons, a process called axonal trafficking. They showed that even in embryonic neurons afflicted with Alzheimer’s disease, well before the mice show any memory loss, mitochondrial axonal trafficking is inhibited. Using a panel of techniques that included electron and light microscopy, they determined that in the brains of mice with Alzheimer’s disease, mitochondria tended to lose their integrity, ultimately leading to the loss of function. Importantly, dysfunctional mitochondria were detected at the synapses of neurons involved in maintaining memory.

“We are not looking at the consequences of Alzheimer’s disease, but at very early events and molecular mechanisms that lead to the disease,” Dr. Trushina says. The next step is looking at the same mitochondrial biomarkers in humans, she says. As the researchers begin to understand more about the mitochondrial dynamics that are altered in Alzheimer’s disease, they hope to move on to designing drugs that can restore the abnormal bioenergetics and mitochondrial dynamics to treat the disease.

The findings appear in the journal PLoS ONE.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mayo Clinic, UMMC Expand Relationship
Mayo Clinic and the University of Mississippi Medical Center have signed an agreement to broaden and deepen their collaboration in clinical trials, other medical research and education.
Monday, October 06, 2014
Mayo Clinic Receives Funding for Gut Function Biomarker Research
The program aims to identify and validate biomarkers that can assess gut function and guide new ways to improve the health and development of children in the developing world.
Friday, December 28, 2012
Mayo Clinic to Collaborate with Indian Science Leaders
The collaboration will cover areas such as drug, device and biomarker studies relating to heart disease, chemical biology, applied genomics and innovations in metabolomics.
Wednesday, October 19, 2011
Controlling iPS Cell Transformation: It’s in the Sugar
Researchers at Mayo Clinic show how cellular metabolism facilitates stem cell procurement from regular tissue.
Friday, September 02, 2011
Scientific News
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos