Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein Controlling Glucose Metabolism also a Tumor Suppressor

Published: Tuesday, December 11, 2012
Last Updated: Tuesday, December 11, 2012
Bookmark and Share
A protein known to regulate how cells process glucose also appears to be a tumor suppressor, adding to the potential that therapies directed at cellular metabolism may help suppress tumor growth.

In their report in the Dec. 7 issue of Cell, a multi-institutional research team describes finding that cells lacking the enzyme SIRT6, which controls how cells process glucose, quickly become cancerous. They also found evidence that uncontrolled glycolysis, a stage in normal glucose metabolism, may drive tumor formation in the absence of SIRT6 and that suppressing glycolysis can halt tumor formation.

"Our study provides solid evidence that SIRT6 may function as a tumor suppressor by regulating glycolytic metabolism in cancer cells," says Raul Mostoslavsky, MD, PhD, of the Massachusetts General Hospital (MGH) Cancer Center, senior author of the report. "Critically, our findings indicate that, in tumors driven by low SIRT6 levels, drugs that may inhibit glycolysis - currently a hot research topic among biotechnology companies - could have therapeutic benefits."

The hypothesis that a switch in the way cells process glucose could set off tumor formation was first proposed in the 1920s by German researcher Otto Warburg, who later received the Nobel Prize for discoveries in cellular respiration. He observed that, while glucose metabolism is normally a two-step process involving glycolysis in the cellular cytoplasm followed by cellular respiration in the mitochondria, in cancer cells rates of glycolysis are up to 200 times higher. Warburg's proposition that this switch in glucose processing was a primary cause of cancer did not hold up, as subsequent research supported the role of mutations in oncogenes, which can spur tumor growth if overexpressed, and tumor suppressors, which keep cell proliferation under control. But recent studies have suggested that alterations in cellular metabolism may be part of the process through which activated oncogenes or inactivated tumor suppressors stimulate cancer formation.

A 2010 study led by Mostoslavsky found that the absence of SIRT6 - one of a family of proteins called sirtuins that regulate many important biological pathways - appears to "flip the switch" from normal glucose processing to the excess rates of glycolysis seen in cancer cells. The current study was specifically designed to investigate whether SIRT6's control of glucose metabolism also suppresses tumor formation. The research team first showed that cultured skin cells from embryonic mice lacking SIRT6 proliferated rapidly and quickly formed tumors when injected into adult mice. They also confirmed elevated glycolysis levels in both cells lacking SIRT6 and tumor cells and found that formation of tumors through SIRT6 deficiency did not appear to involve oncogene activation.

Analysis of tumor samples from patients found reduced SIRT6 expression in many - particularly in colorectal and pancreatic tumors. Even among patients whose tumors appeared to be more aggressive, higher levels of SIRT6 expression may have delayed or, for some, prevented relapse. In a mouse model programmed to develop numerous colon polyps, the researchers showed that lack of intestinal SIRT6 expression tripled the formation of polyps, many of which became invasive tumors. Treating the animals with a glycolytic inhibitor significantly reduced tumor formation, even in the absence of SIRT6.

"Our results indicate that, at least in certain cancers, inhibiting glycolytic metabolism could provide a strong alternative way to halt cancer growth, possibly acting synergistically with current anti-tumor therapies," says Mostoslavsky, an assistant professor of Medicine at Harvard Medical School. "Cancer metabolism has only recently emerged as a hallmark of tumorigenesis, and the field is rapidly expanding. With the current pace of research and the speed at which some basic discoveries are moving into translational studies, it is likely that drugs targeting cancer metabolism may be available to patients in the near future."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gut Microbiome Linked to Inflammatory Proteins
Study looking at influence of genetics, microbiome and environment on immune response links intestinal microbial population to production of inflammatory proteins.
Monday, November 07, 2016
Mass. General, Duke Study Identifies Two Genes that Combine to Cause Rare Syndrome
Mutations in genes that regulate cellular metabolism found in families with ataxia, dementia and reproductive failure.
Monday, May 13, 2013
Scientific News
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Gut Bacteria Affect Our Metabolism
Study confirms, mice that receive gut bacteria transplants from overweight humans gain more weight than mice transplanted with gut bacteria from normal weight subjects.
The Benefits of a Mediterranean-style Diet
A Western-style diet, with more omega-6 fatty acids than the Mediterranean, dysregulates lipid signaling in aged mice and promotes inflammation.
Gut Bacteria Control Glucose Metabolism
Researchers have uncovered a link between the immune system, gut bacteria and glucose metabolism.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Plants Modulate Metabolite Accumulation at Organ Level
Scientists develop computational metabolomic approach to measure metabolic diversity in different plant tissues.
Gut Microbiome Linked to Inflammatory Proteins
Study looking at influence of genetics, microbiome and environment on immune response links intestinal microbial population to production of inflammatory proteins.
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Cell Metabolism Linked to Spread of Cancer
Scientists discover macrophage metabolism can be attuned to prevent the spread of cancer.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!