Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oxygen-Free Energy Designed to Fuel Brain Development Spurs on Growth of Cancer

Published: Wednesday, January 23, 2013
Last Updated: Wednesday, January 23, 2013
Bookmark and Share
The metabolic process which fuels the growth of many cancers has its origins in normal brain growth finds a new study published in BioMed Central's open access journal Cancer & Metabolism.

Using knock-out mice the study shows that interfering with Hexokinase-2 (Hk2), an enzyme integral to glucose metabolism, reduces the aggressiveness of medulloblastoma, the most common malignant brain tumor in children, and allows long term survival of mice.

Most cells only convert glucose to lactate in the absence of oxygen, for example, during a short burst of intensive exercise (anaerobic glycolysis). However rapidly dividing cells, including many cancer cells, convert glucose to lactate even in the presence of oxygen (aerobic glycolysis).

Researchers from the University of North Carolina have found that Hk2 switches on aerobic glycolysis in progenitor cells of the brain and in medulloblastoma. In the absence of Hk2, brain development was disordered. Additionally they found that deleting the Hk2 gene in mice genetically prone to develop medulloblastoma reduced the aggressiveness of the tumors, allowing long-term survival of the mice.

Dr. Timothy Gershon, who led this study, explained, "As long ago as 1924 Otto Warburg hypothesized that cancers use glycolysis to provide energy for growth even in the presence of oxygen. We found that glycolysis in the presence of oxygen is a developmental process that is co-opted in cancer to support malignant growth. We can now think about targeting this process in patients."

Open access publisher BioMed Central is proud to announce the launch of the Cancer & Metabolism . Professor Chi van Dang, co-Editor-in-Chief, commented that "It has become self-evident that metabolism and bioenergetics are regulated by cancer genes. Cancer & Metabolism is launched uniquely to fulfil the needs of a burgeoning field." Professor Michael Pollak, co-Editor-in-Chief, added that "The scope of Cancer & Metabolism will allow for an interdisciplinary readership including cancer biologists, endocrinologists, oncologists, clinical trialists and population scientists."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Integration of Lipidomics and Transcriptomics Data Towards a Systems Biology Model of Sphingolipid Metabolism
An article published in the journal BMC Systems Biology describes how researchers have developed a quantitative model of the sphigolipid pathway by integrating metabolomics and transcriptomics data with legacy knowledge.
Tuesday, March 22, 2011
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
TSRI Team Comes Together with Rare Disease Community
Don’t worry, science fiction fans, the machines aren’t taking over quite yet. It turns out humans still beat computers at reading and comprehending text.
Magnesium Intake May Reduce Pancreatic Cancer Risk
Indiana University researchers have found that magnesium intake may be beneficial in preventing pancreatic cancer.
Gut Microbes: Burning Calories While You Sleep?
Study links changes in gut bacteria to lower resting metabolic rate and weight gain in mice.
Cooperating Bacteria Isolate Cheaters
Bacteria, which reciprocally exchange amino acids, stabilize their partnership on two-dimensional surfaces and limit the access of non-cooperating bacteria to the exchanged nutrients.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!