Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Modelling to Help Create Better, Safer Drugs

Published: Friday, May 24, 2013
Last Updated: Friday, May 24, 2013
Bookmark and Share
How our bodies break down the common drugs ibuprofen, diclofenac and warfarin is the subject of a new study from the University of Bristol.

The research should ultimately help predict how new drugs will be metabolized in the body, potentially helping avoid adverse drug reactions in future.

Professor Adrian Mulholland of the School of Chemistry and colleagues used molecular modelling to show in atomic detail how ibuprofen, diclofenac and warfarin are broken down by a group of enzymes called cytochrome P450s which play an important part in the metabolism of drugs.

Cytochrome P450s break down drugs by adding oxygen atoms to them, thus making them more soluble in water and easier to remove from the body.  It's important that drugs are broken down in this way so they don't accumulate to toxic levels.  However, it's also important that the drugs aren't broken down too quickly otherwise they won't stay in the body long enough to work.

Different people have different types of P450 which mean they break down drugs more quickly or more slowly.  Potentially harmful complications can also sometimes occur, for example, other drugs can 'block up' P450s thus interfering with the metabolism of a particular drug.  Other substances can also interfere with the process, for example grapefruit and grapefruit juice contain a molecule that 'inhibits' some cytochrome P450s, preventing them from breaking down  drugs.  This can cause the drug to build up to a toxic – and possibly lethal – level.

Professor Mulholland said: "An important aim in developing a safe, effective drug is understanding how it will be broken down in the body.  This process would be made quicker, cheaper and safer if we could predict reliably – for example, by using computers – how a candidate drug reacts in the body.

"This study uses molecular modelling methods which are able to describe chemical reactions in large and complex enzymes such as cytochrome P450s.  Our results agree well with experiments, and point to how modelling of this sort can help in developing predictions of drug metabolism."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Dogs Could Act as Effective Early-Warning System for Patients with Diabetes
Dogs that are trained to respond to their owners’ hypoglycaemia could offer a very effective way to alert diabetic patients of impending lowered blood sugars.
Wednesday, August 21, 2013
Scientific News
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Researchers Find Key Player in Diabetic Kidney Disease Through Power of Metabolomics
Discovery could lead to new and better diagnostic marker for chronic kidney disease.
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Study Reveals Improved Way to Interpret High-Throughput Biological Data
A recent study has revealed a novel workflow, identifying associations between molecules to provide insights into cellular metabolism and gene expression in complex biological systems.
Optical 'Dog's Nose' Developed to Detect Cancer, Other Diseases
Researchers are using optical spectroscopy to develop a quick, non-invasive “breath test” they believe will have the potential to screen for a variety of diseases, including diabetes, infections and cancers.
Researchers Link Liver Disease and Drug Metabolism
Researchers have discovered that nonalcoholic steatohepatitis, an increasingly common but often undiagnosed liver disease, could have significant medical implications for people with type 2 diabetes.
Scientists Create Synthetic Membranes That Grow Like Living Cells
Chemists and biologists at UC San Diego have succeeded in designing and synthesizing an artificial cell membrane capable of sustaining continual growth, just like a living cell.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!