Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Controlling Blood Glucose Levels in Mice: A New Type 1 Diabetes Development

Published: Monday, November 18, 2013
Last Updated: Monday, November 18, 2013
Bookmark and Share
Researchers successfully control blood glucose levels in mice by generating insulin producing cells in the pancreas.

Researchers in Belgium have successfully generated insulin-producing beta cells from other pancreatic cells in mice with type 1 diabetes. The mice were then able to control their own glucose levels without additional insulin.

The study, part-funded by JDRF, the type 1 diabetes charity, was published today in Nature Biotechnology.

In those living with the condition, the immune system attacks the beta cells of the pancreas, leaving the person unable to produce insulin. This means they cannot control their own blood glucose, and must rely on insulin injections to stay alive.

However, the other pancreatic cells remain functional, and reprogramming these to produce insulin is a potential pathway to treating the condition.

The researchers simulated type 1 diabetes in the mice and after five weeks, some of these mice received a course of proteins (epidermal growth factor and ciliary neurotrophic factor) that have been known to stimulate beta cell growth in the lab.

The treated mice subsequently began producing insulin, and their blood glucose levels fell to match those of mice with functioning beta cells. The other mice continued to experience hyperglycaemia (high blood glucose levels).

By tracing the genetic origin of the newly grown beta cells, the researchers found that they were mostly derived from another type of pancreatic cell, called acinar cells. These normally help the pancreas secrete digestive juices, and are not involved in insulin production.

Dr. Harry Heimberg, Principle Investigator from Diabetes Research Centre at the University of Brussels, said: “Acinar cells can be reprogrammed to beta-like cells in the laboratory. Several characteristics make acinar cells ideal candidates for reprogramming to beta cells in the pancreas as well: they are the most abundant cell type, their microenvironment is identical to that of beta cells and they are not affected by diabetes."

This study provides hope for those living with type 1 diabetes, but more research will be necessary to see if the findings can help those living with the condition, as it is likely that the immune system would still attack any newly-formed beta cells.

Dr Heimberg added: "We hope that our model will contribute to the development of a robust and safe strategy for beta cell therapy in diabetes."

Karen Addington, Chief Executive of JDRF, said: “The results from this study are interesting, and certainly appear deserving of further exploration. Type 1 diabetes is a challenging and complex condition. But it will one day be cured. It's just a matter of time, money and excellent research."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Microbiome May Hold the Key to Fighting Obesity
In a unique study of free-ranging brown bears, Swedish researchers were able to show that the bears’ dietary variation goes hand-in-hand with dramatic changes in the animal’s gut microbiota.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!