Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Pain Killers May Improve Health of Diabetics and the Obese

Published: Thursday, May 22, 2014
Last Updated: Tuesday, May 27, 2014
Bookmark and Share
Blocking a pain receptor in mice extends lifespan and gives improved insulin response.

Blocking a pain receptor in mice not only extends their lifespan, it also gives them a more youthful metabolism, including an improved insulin response that allows them to deal better with high blood sugar.

“We think that blocking this pain receptor and pathway could be very, very useful not only for relieving pain, but for improving lifespan and metabolic health, and in particular for treating diabetes and obesity in humans,” said Andrew Dillin, a professor of molecular and cell biology at the University of California, Berkeley, and senior author of a new paper describing these results. “As humans age they report a higher incidence of pain, suggesting that pain might drive the aging process.”
Chile peppers, the source of capsaicin, which overstimulates pain receptors on nerve cells and often kills them. Lack of these capsaicin receptors is associated with longer lifespan and improved health. Photo by Celine Riera, UC Berkeley.

The “hot” compound in chili peppers, capsaicin, is already known to activate this pain receptor, called TRPV1 (transient receptor potential cation channel subfamily V member 1). In fact, TRPV1 is often called the capsaicin receptor. Constant activation of the receptor on a nerve cell results in death of the neuron, mimicking loss of TRPV1, which could explain why diets rich in capsaicin have been linked to a lower incidence of diabetes and metabolic problems in humans.

More relevant therapeutically, however, is an anti-migraine drug already on the market that inhibits a protein called CGRP that is triggered by TRPV1, producing an effect similar to that caused by blocking TRPV1. Dillin showed that giving this drug to older mice restored their metabolic health to that of younger mice.

“Our findings suggest that pharmacological manipulation of TRPV1 and CGRP may improve metabolic health and longevity,” said Dillin, who is a Howard Hughes Medical Institute investigator and the Thomas and Stacey Siebel Distinguished Chair in Stem Cell Research. “Alternatively, chronic ingestion of compounds that affect TRPV1 might help prevent metabolic decline with age and lead to increased longevity in humans.”

Dillin and his colleagues at UC Berkeley and The Salk Institute for Biological Studies in La Jolla, Calif., will publish their results in the May 22 issue of the journal Cell.

Pain and obesity

TRPV1 is a receptor found in the skin, nerves and joints that reacts to extremely high temperatures and other painful stimuli. The receptor is also found in nerve fibers that contact the pancreas, where it stimulates the release of substances that cause inflammation or, like CGRP (calcitonin gene-related peptide), prevent insulin release. Insulin promotes the uptake of sugar from the blood and storage in the body’s tissue, including fat.

Past research has shown that mice lacking TRPV1 are protected against diet-induced obesity, suggesting that this receptor plays a role in metabolism. Disrupting sensory perception also increases longevity in worms and flies. But until now, it was not known whether sensory perception also affects aging in mammals.

Dillin and his team have now found that mice genetically manipulated to lack TRPV1 receptors lived, on average, nearly four months – or about 14 percent – longer than normal mice. The TRPV1-deficient mice also showed signs of a youthful metabolism late in life, due to low levels of CGRP — a molecule that blocks insulin release resulting in increased blood glucose levels and thus could contribute to the development of type 2 diabetes. Throughout aging, these mice showed improved ability to quickly clear sugar from the blood as well as signs that they could burn more calories without increasing exercise levels.

Moreover, old mice treated with the anti-migraine drug, which inhibits the activity of CGRP receptors, showed a more youthful metabolic profile than untreated old mice.
UC Berkeley and The Salk Institute filed a patent May 16 on the technology described in the Cell paper. Dillin plans to continue his studies of the effects of TRPV1 and CGRP blockers on mice and, if possible, humans.



Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Microbiome May Hold the Key to Fighting Obesity
In a unique study of free-ranging brown bears, Swedish researchers were able to show that the bears’ dietary variation goes hand-in-hand with dramatic changes in the animal’s gut microbiota.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
TSRI Team Comes Together with Rare Disease Community
Don’t worry, science fiction fans, the machines aren’t taking over quite yet. It turns out humans still beat computers at reading and comprehending text.
Magnesium Intake May Reduce Pancreatic Cancer Risk
Indiana University researchers have found that magnesium intake may be beneficial in preventing pancreatic cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!