Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Pathway Between Gut and Liver Regulates Bone Mass

Published: Tuesday, June 10, 2014
Last Updated: Tuesday, June 10, 2014
Bookmark and Share
Researchers have uncovered a previously unknown biological process involving vitamin B12 and taurine that regulates the production of new bone cells.

In humans it is well known that vitamin deficiencies lead to stunted growth, but the underlying mechanisms have long been a mystery. In this study, the team was able to piece together the biological process that leads to the production of new bone by studying the offspring of mice lacking the Gastric Intrinsic Factor gene, which is active in the stomach and allows the gut to absorb vitamin B12.

"Bone cells aren't solely studied in isolation in the lab as both local and systemic factors play an important role in their function, so it's important to unpick the multitude of biological factors that can affect their proliferation," says Dr Pablo Roman-Garcia, a first author from the Wellcome Trust Sanger Institute. "We were amazed to find a new system that controls bone mass through a protein expressed, of all the places, in the stomach."

The researchers found that bone mass was severely reduced at eight weeks of age in the offspring of mice with vitamin B12 deficiency. Giving the mother a single injection of vitamin B12 during pregnancy was enough to prevent stunted growth and the onset of osteoporosis in the offspring. The team was surprised to find that B12-deficient mice had only one-third of the normal number of bone-creating osteoblast cells, but had no change in bone-degrading osteoclast cells.

Reducing vitamin B12 levels in bone cells in the laboratory did not affect the function of the bone-forming cells directly, while under the same conditions it affected liver cell functions profoundly. These findings suggested to researchers that the liver has an important role to play. This was confirmed when they showed that liver cells from the offspring of B12-deficient mothers were unable to produce taurine. When these mice were fed regular doses of taurine at three weeks of age, they recovered bone mass and grew normally.

"While the importance of taurine is yet to be fully understood, this research shows that vitamin B12 plays a role in regulating taurine production and that taurine plays an important role in bone formation," Dr Vidya Velagapudi, Head of the Metabolomics Unit at the Institute for Molecular Medicine Finland. "To date we have focussed only on vitamin B12-deficient populations, but the next stages of this research will need to confirm the connection between vitamin B12, taurine and bone formation in general populations."

While the focus of this study was the impact of maternal vitamin B12 deficiency on offspring in mouse models, there are promising parallels between these findings and data from human patients. Samples collected by Kocaeli University Hospital, Turkey from children born of nutritionally vitamin B12-deficient mothers also showed a significant decrease in levels of vitamin B12 and taurine. In addition, older patients with vitamin B12 deficiency from a study by the Institute for Molecular Medicine, Finland displayed a statistically positive correlation, suggesting that vitamin B12 plays a key role in regulating taurine synthesis and bone formation in humans of all ages.

"The discovery of this unanticipated pathway between gut, liver and bone would not have been possible without the use of mouse molecular genetics and studies in the clinic that allowed us to understand interactions between these organs," says Dr Vijay K Yadav, a senior author from the Sanger Institute. "The fact that the vitamin B12-taurine-bone pathway affects only bone formation and appears to play the same role in mice and human beings raises the prospect that targeting this pathway through pharmacological means could be a novel approach toward an anabolic treatment of osteoporosis".


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Periodic Table of Protein Complexes
New tool helps to visualise, understand and predict how proteins combine to drive biological processes.
Monday, December 14, 2015
Atlas Shows How Genes Affect Our Metabolism
New atlas of molecules paves the way for improved understanding of metabolic diseases.
Tuesday, May 13, 2014
Genetic Variants Decrease Rate of Metabolism
Defects to gene reveal potential new therapeutic targets against obesity and type 2 diabetes.
Thursday, October 31, 2013
Malaria Study Points the Way Forward For Genetic Studies of Disease in Africa
A study carried out by MalariaGEN provides new insights into how to conduct genetic studies of common diseases in genetically-diverse African populations.
Wednesday, May 27, 2009
Scientific News
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Gut Bacteria Affect Our Metabolism
Study confirms, mice that receive gut bacteria transplants from overweight humans gain more weight than mice transplanted with gut bacteria from normal weight subjects.
The Benefits of a Mediterranean-style Diet
A Western-style diet, with more omega-6 fatty acids than the Mediterranean, dysregulates lipid signaling in aged mice and promotes inflammation.
Gut Bacteria Control Glucose Metabolism
Researchers have uncovered a link between the immune system, gut bacteria and glucose metabolism.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Plants Modulate Metabolite Accumulation at Organ Level
Scientists develop computational metabolomic approach to measure metabolic diversity in different plant tissues.
Gut Microbiome Linked to Inflammatory Proteins
Study looking at influence of genetics, microbiome and environment on immune response links intestinal microbial population to production of inflammatory proteins.
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Cell Metabolism Linked to Spread of Cancer
Scientists discover macrophage metabolism can be attuned to prevent the spread of cancer.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!