Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome Institute of Singapore and Roche NimbleGen: Tracking the Evolutionary Path of the H1N1 Influenza A

Published: Friday, May 29, 2009
Last Updated: Friday, May 29, 2009
Bookmark and Share
Researchers develop a generic PCR approach to amplify full genome of influenza A virus; followed by NimbleGen microarray-based hybridization sequencing.

The recent outbreak of the flu virus, the new strain of Influenza A (nH1N1), has rapidly spread around the world. Many experts are concerned for the evolutionary track of this new strain and whether it will mutate or re-assort with other influenza strains to potentially produce a more deadly strain, as the world experienced with the 1918 strain.

To identify these mutations and re-assortments, a team at the Genome Institute of Singapore has developed a novel “generic” Polymerase Chain Reaction (PCR) approach that can amplify the full genome of any influenza A virus; followed by NimbleGen microarray-based hybridization sequencing, that allows a rapid turn around for entire in about 24 hours.

This new method can use the same RNA material that is left over from traditional PCR based diagnostics and can recognize any novel strain of Influenza in the first pass. This will enable a faster development of diagnostics for any possible new variant; it also can determine if the strain of DNA changed to become even more dangerous.

Working in close collaboration with scientists from Roche NimbleGen, and utilizing the flexibility that the NimbleGen platform offers, the first arrays were designed, manufactured, and shipped to Singapore just 4 days after the project was started. The custom-developed high-density microarray contains probes which can reveal the complete sequence of the flu virus from patient samples. This will enable detection of any single base mutations in the regions of the genome, which is important for drug susceptibility. Where virus re-assortment has occurred, it will be able to identify which strain of Influenza A it has recombined with, as well as the genomic location of the re-assortment to better understand and track the evolutionary path and variants of the virus.

Dr. Christopher Wong, Chief Scientific Officer for Biomarker Development at the GIS said, “This new approach takes advantage of our novel PCR technology, developed for detecting a wide range of pathogens. This should greatly simplify the process of sequencing novel viruses.”

Dr. Gerd Maass, CEO of Roche NimbleGen, stated: “With the development of this new system, the entire project team hopes to better and more quickly track this new flu variant and keep the world informed of how the virus is evolving.”

GIS Executive Director Prof Edison Liu added, "The significance of this tracking process can be better appreciated in that it provides vital information that can be used to prevent or combat a pandemic.”

A similar approach using NimbleGen arrays was used successfully during the SARS outbreak in 2003 to understand the infectious source and to globally monitor the SARS virus.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Engineer Human Stem Cells and Move Closer to Mastering Regenerative Medicine
Researchers have successfully converted human embryonic stem cells (hESCs) cultured in the laboratory to a state that is closer to the cells found in the human blastocyst.
Wednesday, December 11, 2013
Genome Institute of Singapore and Fluidigm Establish Asia's First Single-Cell Genomics Research Center
Center exclusively dedicated to accelerating the understanding of how individual cells work, and how diagnosis and treatment might be enhanced through insight derived from single cells.
Monday, December 17, 2012
Singapore Scientists Lead in 3D Mapping of Human Genome to Help Understand Human Diseases
This discovery is crucial in understanding how human genes work together, and will re-write textbooks on how transcription regulation and coordination takes place in human cells.
Thursday, February 02, 2012
Scientists’ Genetic Mapping of Han Chinese Provides Invaluable Information of Ethnic Chinese Ancestry
Findings provides invaluable information to determine the design and interpretation of genetic studies of human diseases.
Monday, December 07, 2009
Singapore Scientists’ made Significant Discovery for Stem Cell Technology and Clinical Research
Scientists reveal important insights into how researchers can manipulate and engineer different stem cells for the treatment of human degenerative disorders.
Tuesday, September 23, 2008
Scientists Found a Way to Enhance Development of Human Embryonic Stem Cells Therapies
Scientists at the Genome Institute of Singapore and the National University of Singapore have found a way of manipulating ESCs that allows stem cells to be produced for use in clinical treatments.
Tuesday, January 23, 2007
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!