Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researcher at UPC’s Terrassa Campus Discovers Genetic Circuit that Regulates Behavior of Stem Cells

Published: Thursday, August 27, 2009
Last Updated: Thursday, August 27, 2009
Bookmark and Share
The circuit explains the fact that stem cells are always prepared to change into any type of cell.

Jordi Garcia Ojalvo - a lecturer at the Department of Physics and Nuclear Engineering of the Universitat Politecnica de Catalunya’s School of Industrial and Aeronautical Engineering of Terrassa (ETSEIAT) - has discovered the genetic circuit that controls the behavior of embryonic stem cells.

The discovery was made in collaboration with University of Cambridge researchers. The process by which a stem cell is transformed into another type of cell is called differentiation, and the ability to change into other cell types is known as pluripotentiality.

Up until now it was generally believed in the international scientific community that embryonic stem cells are in a state of biochemical repose, static, awaiting a signal that causes them to differentiate, that gives them the initial trait which leads them to become bone, blood or skin cells, or any other type of cell of which an organism is composed.

Jordi Garcia Ojalvo, one of the coordinators of the Nonlinear Dynamics, Nonlinear Optics and Lasers research group at the UPC’s Terrassa Campus, has discovered that this view is not correct, and that in fact the state of pluripotentiality in stem cells is anything but static.

In a paper published this July in the prestigious journal PLoS Biology, Jordi Garcia Ojalvo and the group headed by University of Cambridge researcher Alfonso Martinez Arias say that the pluripotentiality of embryonic stem cells is not static and that these cells are in fact constantly changing.

Garcia-Ojalvo and Martinez-Arias also found that there is always a subset of stem cells that are on alert, ready to respond to the signals that trigger the process of transformation known as differentiation. This ensures that an embryo’s differentiation program is completed correctly and with the necessary speed.

The study-carried out using mouse embryonic stem cells but with results that are also valid for human stem cells-allowed the researchers to identify the genetic circuit that gives stem cells their pluripotent properties. Thanks to this discovery, it will now be possible to more effectively maintain embryonic stem cells in a pluripotent state in vitro and to more efficiently obtain differentiated cells-blood, bone, skin and other cells-from stem cells.

For the UPC Terrassa and Cambridge researchers, the starting point on the road to their discovery was the hypothesis that chance plays an important role in the process. This is consistent with the fact that disorder plays a fundamental role in the functioning of living organisms. Cells are continually subject to random fluctuations. Based on this premise, Garcia-Ojalvo developed a mathematical model of the functioning of the proposed genetic circuit in the presence of disorder. Martinez-Arias then conducted experimental procedures to confirm these calculations in the lab.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Renewable Killer Cells Could Be Key to Cancer Immunotherapy
Molecule that can turn ‘killer T-cells’ into long-lived, renewable cells that could help make cell-based immunotherapy a realistic prospect to treat cancer.
Tuesday, November 01, 2016
Anti-Inflammatory Drugs Could Help Treat Depression
Anti-inflammatory drugs could be used to treat some cases of depression, which further implicates our immune system in mental health disorders.
Thursday, October 20, 2016
Quadruple Helix DNA Aids Cancer Therapies
Researchers have identified the role that a four-stranded version of DNA may play in the role of cancer progression.
Wednesday, September 21, 2016
Gene Signature in Healthy Brains Pinpoints
Researchers have identified a specific signature of a group of genes in the regions of the brain which are most vulnerable to Alzheimer’s disease.
Saturday, August 13, 2016
Virus Attracts Bumblebees to Infected Plants by Changing Scent
Study of bee-manipulating plant virus reveals that replicating the scent caused by infection could encourage declining bee populations to pollinate crops.
Friday, August 12, 2016
Newly-discovered Mechanism Influences How Immune Cells ‘Eat’ Invading Bacteria
A new mechanism that affects how our immune cells perform – and hence their ability to prevent disease – has been discovered by an international team of researchers led by Cambridge scientists.
Wednesday, August 03, 2016
Cellular Origin of Skin Cancer Identified
Scientists have identified ‘cell of origin’ in the most common form of skin cancer, and followed the process that leads to tumour growth.
Tuesday, July 12, 2016
Identifying Side-Effects At Early Stages Of Drug Development
An approach that could reduce the chances of drugs failing during the later stages of clinical trials has been demonstrated by a collaboration between the University of Cambridge and pharmaceutical company GlaxoSmithKline (GSK).
Friday, June 03, 2016
A Shaggy Dog Story: The Contagious Cancer That Conquered The World
A contagious form of cancer that can spread between dogs during mating has highlighted the extent to which dogs accompanied human travellers throughout our seafaring history. But the tumours also provide surprising insights into how cancers evolve by ‘stealing’ DNA from their host.
Wednesday, May 18, 2016
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Wednesday, May 04, 2016
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Wednesday, May 04, 2016
Limbs May Have Evolved From Sharks’ Gills
Latest analysis shows that human limbs share a genetic programme with the gills of cartilaginous fishes such as sharks and skates, providing evidence to support a century-old theory on the origin of limbs that had been widely discounted.
Wednesday, April 20, 2016
Very Early Stage Human Stem Cell Lines Developed
Scientists at the University of Cambridge have for the first time shown that it is possible to derive from a human embryo so-called ‘naïve’ pluripotent stem cells – one of the most flexible types of stem cell, which can develop into all human tissue other than the placenta.
Monday, March 14, 2016
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Friday, February 12, 2016
Stem Cells Likely to be Safe for Use in Regenerative Medicine
Cambridge researchers have found the strongest evidence to date that human pluripotent stem cells – cells that can give rise to all tissues of the body – will develop normally once transplanted into an embryo.
Monday, December 21, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Soil Carbon Release Might Equal U.S. Emissions
Research suggests 55M tons of carbon will be release from soils by 2050, 17% higher than prjected emissions.
Inspiring Futuristic Innovation: Brain ‘Organoids’
Scientists create artificial brains, providing an advanced model for studying brain tumour development.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Unexpected Epigenetic Enzymes Role in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!