" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researcher at UPC’s Terrassa Campus Discovers Genetic Circuit that Regulates Behavior of Stem Cells

Published: Thursday, August 27, 2009
Last Updated: Thursday, August 27, 2009
Bookmark and Share
The circuit explains the fact that stem cells are always prepared to change into any type of cell.

Jordi Garcia Ojalvo - a lecturer at the Department of Physics and Nuclear Engineering of the Universitat Politecnica de Catalunya’s School of Industrial and Aeronautical Engineering of Terrassa (ETSEIAT) - has discovered the genetic circuit that controls the behavior of embryonic stem cells.

The discovery was made in collaboration with University of Cambridge researchers. The process by which a stem cell is transformed into another type of cell is called differentiation, and the ability to change into other cell types is known as pluripotentiality.

Up until now it was generally believed in the international scientific community that embryonic stem cells are in a state of biochemical repose, static, awaiting a signal that causes them to differentiate, that gives them the initial trait which leads them to become bone, blood or skin cells, or any other type of cell of which an organism is composed.

Jordi Garcia Ojalvo, one of the coordinators of the Nonlinear Dynamics, Nonlinear Optics and Lasers research group at the UPC’s Terrassa Campus, has discovered that this view is not correct, and that in fact the state of pluripotentiality in stem cells is anything but static.

In a paper published this July in the prestigious journal PLoS Biology, Jordi Garcia Ojalvo and the group headed by University of Cambridge researcher Alfonso Martinez Arias say that the pluripotentiality of embryonic stem cells is not static and that these cells are in fact constantly changing.

Garcia-Ojalvo and Martinez-Arias also found that there is always a subset of stem cells that are on alert, ready to respond to the signals that trigger the process of transformation known as differentiation. This ensures that an embryo’s differentiation program is completed correctly and with the necessary speed.

The study-carried out using mouse embryonic stem cells but with results that are also valid for human stem cells-allowed the researchers to identify the genetic circuit that gives stem cells their pluripotent properties. Thanks to this discovery, it will now be possible to more effectively maintain embryonic stem cells in a pluripotent state in vitro and to more efficiently obtain differentiated cells-blood, bone, skin and other cells-from stem cells.

For the UPC Terrassa and Cambridge researchers, the starting point on the road to their discovery was the hypothesis that chance plays an important role in the process. This is consistent with the fact that disorder plays a fundamental role in the functioning of living organisms. Cells are continually subject to random fluctuations. Based on this premise, Garcia-Ojalvo developed a mathematical model of the functioning of the proposed genetic circuit in the presence of disorder. Martinez-Arias then conducted experimental procedures to confirm these calculations in the lab.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cells Likely to be Safe for Use in Regenerative Medicine
Cambridge researchers have found the strongest evidence to date that human pluripotent stem cells – cells that can give rise to all tissues of the body – will develop normally once transplanted into an embryo.
Monday, December 21, 2015
The Manufacturing Challenges of Nanotechnology
Head of NanoManufacturing at the Department of Engineering’s Institute for Manufacturing (IfM) Dr Michaël de Volder explains why manufacturing carbon nanotubes is so difficult – and so important.
Thursday, December 03, 2015
Ancient Genome from Africa Sequenced for the First Time
DNA from 4,500-year-old Ethiopian skull reveals a huge migratory wave of West Eurasians into the Horn of Africa around 3,000 years ago had a genetic impact on modern populations right across the African continent.
Monday, October 19, 2015
Greater Understanding Of Polycystic Ovary Syndrome
A new genetic study of over 200,000 women reveals the underlying mechanisms of polycystic ovary syndrome, as well as potential interventions.
Wednesday, September 30, 2015
Maintaining Healthy DNA Delays Menopause
An international study of nearly 70,000 women has identified more than forty regions of the human genome that are involved in governing at what age a woman goes through menopause.
Tuesday, September 29, 2015
New Consortium to Develop and Study Early Stage Drugs
An innovative new Consortium will act as a ‘match-making’ service between pharmaceutical companies and researchers in Cambridge with the aim of developing and studying precision medicines for some of the most globally devastating diseases.
Thursday, July 30, 2015
MRSA Contamination Found in Supermarket Pork
A survey carried out earlier this year has found the first evidence of the ‘superbug’ bacteria Methicillin-Resistant Staphylococcus Aureus (MRSA) in sausages and minced pork obtained from supermarkets in the UK.
Monday, June 22, 2015
Expression of Certain Genes Changes with the Seasons
As the seasons change, so do the expression levels of many human genes, including ones involved in immune function, according to new research.
Thursday, May 14, 2015
Blood Markers Could Help Predict Outcome Of Infant Heart Surgery
New research suggests it may be possible to predict an infant’s progress following surgery for congenital heart disease by analysing a number of important small molecules in the blood.
Friday, May 08, 2015
Poisons, Plants and Palaeolithic Hunters
Dr Valentina Borgia to develop a technique for detecting residues of deadly substances on archaeological objects.
Saturday, April 11, 2015
‘Mini-Lungs’ Grown To Aid The Study Of Cystic Fibrosis
'Mini-lungs’ have been created using stem cells derived from skin cells of patients with cystic fibrosis.
Thursday, March 19, 2015
Gene Discovery Provides Clues To How TB May Evade The Immune System
The largest genetic study of TB susceptibility to date has led to a potentially important new insight into how the pathogen manages to evade the immune system.
Tuesday, March 17, 2015
Human Genome Includes 'Foreign' Genes Not From Our Ancestors
Many animals, including humans, acquired essential ‘foreign’ genes from microorganisms co-habiting their environment in ancient times, according to research published in the open access journal Genome Biology.
Monday, March 16, 2015
Order Matters: Sequence Of Genetic Mutations Determines How Cancer Behaves
The order in which genetic mutations are acquired determines how an individual cancer behaves, according to research from the University of Cambridge, published today in the New England Journal of Medicine.
Thursday, February 12, 2015
Artificially-intelligent Robot Scientist ‘Eve’ Could Boost Search for New Drugs
Eve, an artificially-intelligent ‘robot scientist’ could make drug discovery faster and much cheaper, say researchers writing in the Royal Society journal Interface.
Wednesday, February 04, 2015
Scientific News
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Madison Researchers Begin Work on Zika Virus
Work will start with basic questions about Zika virus infection.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!