Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify New, Cancer-Causing Role for Protein

Published: Tuesday, September 01, 2009
Last Updated: Tuesday, September 01, 2009
Bookmark and Share
Key to Akt activation is ubiquitination by a surprising culprit - TRAF6.

The mainstay immune system protein TRAF6 plays an unexpected, key role activating a cell signaling molecule that in mutant form is associated with cancer growth, researchers at The University of Texas M. D. Anderson Cancer Center report in the Aug. 28 edition of Science.

"The mechanism that we discovered activates Akt and also contributes to hyperactivation of a mutant form of Akt found in breast, colon and other cancers," said senior author Hui-Kuan Lin, Ph.D., assistant professor in M. D. Anderson's Department of Molecular and Cellular Oncology.

Akt is a signaling protein that plays a central role in numerous biological functions, including cell growth and programmed cell death, or apoptosis, Lin said. Deregulated Akt expression has been found to contribute to cancer development.

"Our novel findings are that Akt undergoes ubiquitination to be activated, and that TRAF6 regulates that process. We've found that TRAF6 is not just involved in the innate immune response, but plays a role in cell growth and carcinogenesis," Lin said.

Ubiquitins are regulatory proteins that work by binding to other proteins. While ubiquitins are best known for marking a defective protein for death by the cell's proteasome complex, Lin said, ubiquitination of Akt is not tied to the proteasome. Ubiquitins are transferred to target proteins by another set of proteins called ligases.

Akt resides in the cell's cytoplasm and must be recruited to the cell membrane in order to be activated by attachment of phosphate groups to specific locations on the protein, Lin explained. The mechanism that gets Akt to the membrane had not been understood.

Because one type of ubiquitination involves protein movement, Lin's team launched a series of cell line experiments that showed Akt is ubiquitinated, and in a way not involving the proteasome.

Screening a different class of ubiquitin ligases showed that overexpression of TRAF6 E3 ligase promotes Akt ubiquitination. Subsequent experiments showed that Akt ubiquitination is required to move Akt to the cell membrane, and leads to Akt's phosphorylation and activation.

Next, the researchers analyzed a mutant form of Akt implicated in human breast cancer, finding that increased Akt ubiquitination contributes to the hyperactivation of Akt in the mutant cells. "We discovered this oncogenic Akt mutant is hyperubiquitinated," Lin said. "If you disrupt its ubiquitination, you deactivate the mutant."

The team found depleting TRAF6 in prostate cancer cells reduced Akt activation. And mice with TRAF6 knocked down developed smaller prostate cancer tumors than those with active TRAF6. "We believe that TRAF6 is a previously unrecognized oncogene and is a new potential target for treating human cancers," Lin said.

Having discovered this Akt activation pathway, Lin and colleagues are now trying to identify the enzyme that normally turns it off.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Monday, June 27, 2016
Scientific Gains May Make Electronic Nose the Next Everyday Device
UT Dallas team breathes new life into possibilities by using CMOS integrated circuits technology.
Friday, June 17, 2016
New Breast Cancer Staging System
Neo-Bioscore adds HER2 status into previously developed system.
Monday, March 21, 2016
Prostate Cancer Surgery Improved
Researchers at UT Southwestern Medical Center have determined that light reflectance spectroscopy can differentiate between malignant and benign prostate tissue with 85 percent accuracy, a finding that may lead to real-time tissue analysis during prostate cancer surgery.
Monday, March 14, 2016
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Friday, February 12, 2016
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Wednesday, January 27, 2016
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
Wednesday, January 27, 2016
Mechanism of Tumor Suppressing Gene Uncovered
The most commonly mutated gene in cancer,p53, works to prevent tumor formation by keeping mobile elements in check that otherwise lead to genomic instability, UT Southwestern Medical Center researchers have found.
Tuesday, January 26, 2016
Gene-Editing Halts DMD Progression
Using a new gene-editing technique, a team of scientists from UT Southwestern Medical Center stopped progression of Duchenne muscular dystrophy (DMD) in young mice.
Tuesday, January 05, 2016
Fighting Pain with Ketamine
Researchers at the Texas A&M Health Science Center are using ketamine, a drug that already exists as an anesthetic, to treat pain.
Friday, October 16, 2015
NASA Award Grant To Develop Platform For Detecting Amino Acids
A University of Texas at Arlington researcher will develop a platform that could help scientists move one step closer to answering whether life may have existed “out there” or if we are really alone in the universe.
Tuesday, September 08, 2015
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Wednesday, August 26, 2015
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Tuesday, August 18, 2015
Critical New Insights on DNA Repair
The enzyme fumarase is key to reversing genetic damage leading to cancer and therapy resistance.
Wednesday, August 05, 2015
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Thursday, July 23, 2015
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!