Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Researchers Identify New, Cancer-Causing Role for Protein

Published: Tuesday, September 01, 2009
Last Updated: Tuesday, September 01, 2009
Bookmark and Share
Key to Akt activation is ubiquitination by a surprising culprit - TRAF6.

The mainstay immune system protein TRAF6 plays an unexpected, key role activating a cell signaling molecule that in mutant form is associated with cancer growth, researchers at The University of Texas M. D. Anderson Cancer Center report in the Aug. 28 edition of Science.

"The mechanism that we discovered activates Akt and also contributes to hyperactivation of a mutant form of Akt found in breast, colon and other cancers," said senior author Hui-Kuan Lin, Ph.D., assistant professor in M. D. Anderson's Department of Molecular and Cellular Oncology.

Akt is a signaling protein that plays a central role in numerous biological functions, including cell growth and programmed cell death, or apoptosis, Lin said. Deregulated Akt expression has been found to contribute to cancer development.

"Our novel findings are that Akt undergoes ubiquitination to be activated, and that TRAF6 regulates that process. We've found that TRAF6 is not just involved in the innate immune response, but plays a role in cell growth and carcinogenesis," Lin said.

Ubiquitins are regulatory proteins that work by binding to other proteins. While ubiquitins are best known for marking a defective protein for death by the cell's proteasome complex, Lin said, ubiquitination of Akt is not tied to the proteasome. Ubiquitins are transferred to target proteins by another set of proteins called ligases.

Akt resides in the cell's cytoplasm and must be recruited to the cell membrane in order to be activated by attachment of phosphate groups to specific locations on the protein, Lin explained. The mechanism that gets Akt to the membrane had not been understood.

Because one type of ubiquitination involves protein movement, Lin's team launched a series of cell line experiments that showed Akt is ubiquitinated, and in a way not involving the proteasome.

Screening a different class of ubiquitin ligases showed that overexpression of TRAF6 E3 ligase promotes Akt ubiquitination. Subsequent experiments showed that Akt ubiquitination is required to move Akt to the cell membrane, and leads to Akt's phosphorylation and activation.

Next, the researchers analyzed a mutant form of Akt implicated in human breast cancer, finding that increased Akt ubiquitination contributes to the hyperactivation of Akt in the mutant cells. "We discovered this oncogenic Akt mutant is hyperubiquitinated," Lin said. "If you disrupt its ubiquitination, you deactivate the mutant."

The team found depleting TRAF6 in prostate cancer cells reduced Akt activation. And mice with TRAF6 knocked down developed smaller prostate cancer tumors than those with active TRAF6. "We believe that TRAF6 is a previously unrecognized oncogene and is a new potential target for treating human cancers," Lin said.

Having discovered this Akt activation pathway, Lin and colleagues are now trying to identify the enzyme that normally turns it off.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fighting Pain with Ketamine
Researchers at the Texas A&M Health Science Center are using ketamine, a drug that already exists as an anesthetic, to treat pain.
Friday, October 16, 2015
NASA Award Grant To Develop Platform For Detecting Amino Acids
A University of Texas at Arlington researcher will develop a platform that could help scientists move one step closer to answering whether life may have existed “out there” or if we are really alone in the universe.
Tuesday, September 08, 2015
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Wednesday, August 26, 2015
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Tuesday, August 18, 2015
Critical New Insights on DNA Repair
The enzyme fumarase is key to reversing genetic damage leading to cancer and therapy resistance.
Wednesday, August 05, 2015
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Thursday, July 23, 2015
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Monday, July 20, 2015
Partly Human Yeast Show A Common Ancestor’s Lasting Legacy
Edward Marcotte and his colleagues at the University of Texas at Austin created hundreds of strains of humanized yeast by inserting into each a single human gene and turning off the corresponding yeast gene.
Tuesday, May 26, 2015
Cancer-Causing Virus Blocks Human Immune Response
Epstein-Barr virus shown to outwit the human immune response using microRNAs.
Wednesday, January 28, 2015
Researchers Reveal Genomic Diversity Of Individual Lung Tumors
Findings suggest sequencing a single region of a localized tumor will identify driver mutations.
Friday, October 10, 2014
How Fluid Flow Influences Neuron Growth
A University of Texas at Arlington team exploring how neuron growth can be controlled in the lab and, possibly, in the human body has published a new paper in Nature Scientific Reports on how fluid flow could play a significant role.
Wednesday, October 08, 2014
3-in-1 Spectroscopy System Improves Skin Cancer Detection
The new device may detect cancerous skin lesions early on, leading to better treatment outcomes and ultimately saving lives.
Thursday, August 07, 2014
Method Developed at UT Arlington Allows Quantitative Nanoscopic Imaging Through Silicon
A team of scientists has figured out how to quantitatively observe cellular processes taking place on so-called “lab on a chip” devices in a silicon environment.
Monday, October 07, 2013
Chlamydia Protein has an Odd Structure
Research could lead to new ways to combat this sexually transmitted disease.
Thursday, June 13, 2013
Researchers Reveal New Enzyme that Acts as Innate Immunity Sensor
Two studies by researchers at UT Southwestern Medical Center could lead to new treatments for lupus and other autoimmune diseases and strengthen current therapies for viral, bacterial, and parasitic infections.
Monday, February 18, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos