Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Duplicated Gene May Explain Rare Cancer in Some Families

Published: Monday, October 26, 2009
Last Updated: Monday, October 26, 2009
Bookmark and Share
NCI researchers have now identified a genetic change that may lead to chordoma, a type of bone cancer, in four of the families.

For more than a decade, researchers at NCI and their collaborators have collected DNA from seven families with an inherited form of chordoma, a type of bone cancer. The researchers have now identified a genetic change that may lead to the disease in four of the families.

The change was not a mutation in the DNA sequence of a gene, as the researchers had expected, but rather the duplication of an entire gene. In each family, an extra copy of the gene was created by a large structural change in the genome-a rearrangement-that occurred once and was passed down to future generations.

While the type of the genetic change was perhaps unexpected, the identity of the gene was not. As the researchers reported online in Nature Genetics on October 4, the gene is active in the chordoma tumor cells of people with the noninherited form of the disease. The gene is called T, or brachyury.

“We have found the gene for a subset of families with an inherited predisposition to chordoma,” said lead investigator Dr. Rose Yang of NCI’s Division of Cancer Epidemiology and Genetics (DCEG). “We had thought this gene may be important in predisposing to the disease, and for the first time we have direct evidence from a study of high-risk families.”

About 300 cases of the noninherited form of chordoma are diagnosed in the United States each year. The disease causes a tumor to develop anywhere along the spinal column, from the base of the skull to the tailbone, and the tumor can be fatal. Researchers believe the tumors arise from remnants of the notochord, an embryonic precursor to the spinal cord.

The discovery provides a new clue to the biology of chordoma and could have broader implications. It suggests an alternate strategy for finding susceptibility genes when traditional methods fail, the researchers said. In this case, genetic mapping studies had linked a region of chromosome 6 to the disease, but sequencing DNA in the region, including the T gene, revealed no suspicious changes.

“Sequencing DNA doesn’t find everything, and it won’t tell you if a whole gene is deleted or duplicated,” said co-author Dr. David Ng of the National Human Genome Research Institute (NHGRI). “So if a gene appears to play a role in a disease but you don’t find any mutations by sequencing, looking for genomic rearrangements, including duplications or deletions in the gene, is a reasonable next step.”

To survey the structural changes in the genome, the researchers used a technique called array comparative genomic hybridization (CGH), which revealed a different genomic rearrangement in each of the four families. Yet nearly all of the affected family members had tumors in the same area (the base of the skull).

Most human DNA is present in two copies per cell (one from each parent), yet in each cell, certain regions are deleted or present in multiple copies-what are known as copy number variations, or CNVs. These changes are usually harmless, but certain types of rearrangements can lead to cancer and other diseases.

In the largest survey to date of frequent CNVs in the human genome, reported this month in Nature, researchers said that any two human genomes differ by more than 1,000 CNVs (about 0.8 percent of a person’s DNA sequence). The study authors predicted that genomic rearrangements are likely to play a role in rare as well as common diseases.

The chordoma study certainly supports this idea. It also underscores just how important advances in technology and persistence are in the search for susceptibility genes.

“We almost gave up hope of finding the gene on several occasions,” said Dr. Dilys Parry of DCEG, who launched the project in 1996 after identifying a chordoma family that now has 10 affected members spanning several generations. “But in the last 13 years, the technology has changed enormously, and we’ve been able to take advantage of the advances at every step along the way.”

This was perhaps most evident 2 years ago, when the team used new markers and tools to locate the region of chromosome 6 with the T gene. After negative results from DNA sequencing, the researchers used the array-CGH technology to screen 13 members of the 7 families (including 11 with chordoma) for genomic rearrangements.

The result made sense immediately to the researchers because the T gene is active in some chordoma tumor cells and it regulates the development of the notochord. However, they do not yet understand how the gene might cause chordoma, according to co-author Dr. Michael Kelley of Duke University Medical Center and a former NCI investigator.

Another question is what caused the disease in the three families without the T gene duplication. The researchers predict that mutations in other genes or an as-yet-unknown mechanism involving the T gene will eventually provide the answer. They are actively enrolling chordoma families to participate in an ongoing study to identify the other genes.

In some rare inherited cancers, there are not enough families-or the families are too small-to use traditional linkage studies to locate chromosome regions of interest. But in some of these cases, noted Dr. Yang, testing for genomic rearrangements may be informative.

“This study really highlights what we can do with new genomic technologies,” said Dr. Joan Bailey-Wilson, who studies the genetics of inherited diseases at NHGRI and was not involved in the research. “CNVs are another item in our tool box for locating genetic susceptibility variants, and most of us are excited about any new tool we can get.”

The discovery of a susceptibility gene always leads to important questions about biological processes that can take many years to answer, Dr. Bailey-Wilson added. “Once we find a gene that we believe is responsible for a linkage signal, we have to realize that the true work is only starting,” she said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Using Cancer Cells' Mass to Predict Treatment Response
A device has been developed that can detect changes in cell mass at a minute scale.
Thursday, November 24, 2016
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Thursday, September 29, 2016
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Tuesday, September 27, 2016
Forging Collaborations to Progress Against Cancer
NCI take steps to further international collaborations to expand cancer research.
Monday, September 26, 2016
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Friday, September 09, 2016
NCI Embraces Recommendations for Cancer Moonshot
NCI accepts recommendations for approaches likely to make progress against cancer under the Cancer Moonshot
Thursday, September 08, 2016
Engineered Stem Cells Identify Medulloblastoma Treatment
Researchers have engineered neural stem cells to carry mutations thought to drive a particular subtype of medulloblastoma.
Monday, September 05, 2016
Tumor DNA in Blood Signals Immunotherapy Response
Research suggests that tumor DNA circulating in blood may be a biological marker for T-cell transfer immunotherapy.
Friday, September 02, 2016
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Wednesday, July 27, 2016
Identifying Cancer Drug Targets Using 3D-Modelling
Researchers are now able to model genetic mutations manipulation of proteins that can potentially drive cancer.
Monday, July 18, 2016
Elevated Bladder Cancer Risk in New England and Arsenic in Drinking Water From Private Wells
Researchers have found that drinking water from private wells, may have contributed to the elevated risk of bladder cancer in northern new England.
Tuesday, May 03, 2016
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
Friday, May 08, 2015
National Cancer Institute Awards Two Lung Cancer CTC Development Contracts to Cynvenio Biosystems, Inc.
Company also announces additional equity investment of $2.0 million.
Tuesday, February 07, 2012
2011 Biospecimen Research Network (BRN) Symposium
The National Cancer Institute's (NCI) Biospecimen Research Network Symposium, "Advancing Cancer Research Through Biospecimen Science," will be held March 28-29, 2011, at the Bethesda North Marriott Hotel & Conference Center in Bethesda, MD
Friday, January 07, 2011
NCI Announces Plans to Reinvigorate Clinical Trials
The National Cancer Institute (NCI) has announced major changes to be made in the long-established Clinical Trials Cooperative Group Program that conducts many of the nationwide trials of new cancer therapies.
Friday, December 24, 2010
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!