Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Drought Resistance Explained

Published: Tuesday, November 24, 2009
Last Updated: Tuesday, November 24, 2009
Bookmark and Share
Structural study at EMBL reveals how plants respond to water shortages.

Much as adrenaline coursing through our veins drives our body’s reactions to stress, the plant hormone abscisic acid (ABA) is behind plants’ responses to stressful situations such as drought, but how it does so has been a mystery for years.

Scientists at the European Molecular Biology Laboratory (EMBL) in Grenoble, France, and the Consejo Superior de Investigaciones Cientificas (CSIC) in Valencia, Spain discovered that the key lies in the structure of a protein called PYR1 and how it interacts with the hormone.

Their study, published online in Nature, could open up new approaches to increasing crops’ resistance to water shortage.

Under normal conditions, proteins called PP2Cs inhibit the ABA pathway, but when a plant is subjected to drought, the concentration of ABA in its cells increases. This removes the brake from the pathway, allowing the signal for drought response to be carried through the plant’s cells. This turns specific genes on or off, triggering mechanisms for increasing water uptake and storage, and decreasing water loss. But ABA does not interact directly with PP2Cs, so how does it cause them to be inhibited? Recent studies had indicated that the members of a family of 14 proteins might each act as middle-men, but how those proteins detected ABA and inhibited PP2Cs remained a mystery – until now.

A group of scientists headed by José Antonio Marquez from EMBL Grenoble and Pedro Luis Rodriguez from CSIC looked at one member of this family, a protein called PYR1. When they used X-ray crystallography to determine its 3-dimensional structure, the scientists found that the protein looks like a hand.

In the absence of ABA, the hand remains open, but when ABA is present it nestles in the palm of the PYR1 hand, which closes over the hormone as if holding a ball, thereby enabling a PP2C molecule to sit on top of the folded fingers. As these features seem to be conserved across most members of this protein family, these findings confirm the family as the main ABA receptors. Moreover, they elucidate how the whole process of stress response starts: by binding to PYR1, ABA causes it to hijack PP2C molecules, which are therefore not available to block the stress response.

“If you treat plants with ABA before a drought occurs, they take all their water-saving measures before the drought actually hits, so they are more prepared, and more likely to survive that water shortage – they become more tolerant to drought”, Rodriguez explains.

“The problem so far”, Marquez adds, “has been that ABA is very difficult – and expensive – to produce. But thanks to this structural biology approach, we now know what ABA interacts with and how, and this can help to find other molecules with the same effect but which can be feasibly produced and applied.”

To determine the structure of PYR1, the scientists made use of the infrastructure of the Partnership for Structural Biology, including EMBL Grenoble’s high-throughput crystallization facilities and the beamlines at the European Synchrotron Radiation Facility, located in the same campus as EMBL Grenoble.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
Friday, July 17, 2015
EMBL Scientists Solve Decades-Old Cell Biology Puzzle
Behaviour of clathrin proteins, crucial for endocytosis, is clarified using new imaging techniques.
Saturday, June 20, 2015
It Runs in the Family
Distantly related viruses share a common machinery for replication.
Saturday, May 23, 2015
The Battle for Iron
Understanding anaemias of the chronically ill.
Saturday, February 07, 2015
Protecting us from Our Cells
Growth factor boosts natural defence against auto-immune disorders.
Tuesday, November 04, 2014
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Wired for Change
First steps of gene regulation evolution revealed.
Monday, August 05, 2013
More than Meets the Eye
‘Transformer’ protein makes different sized transport pods.
Tuesday, May 29, 2012
Rigged to Explode?
Inherited mutation links exploding chromosomes to cancer.
Wednesday, April 11, 2012
Multi-tasking Protein Provides New Approaches for Anti-tuberculosis Drugs
Scientists from EMBL reveal new insights into the workings of enzymes from a group of bacteria including Mycobacterium tuberculosis.
Thursday, February 17, 2011
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.
Friday, September 03, 2010
EMBL Scientists Identify Proteins that Ensure Iron Balance
Researchers discover that newly found group of proteins are required for the functioning of mitochondria, the cell’s energy factories.
Monday, August 09, 2010
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production.
Monday, June 14, 2010
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Intracellular Microlasers Could Allow Precise Labeling of up to a Trillion Individual Cells
MGH investigators have induced structures incorporated within individual cells to produce laser light at wavelengths that differ based on the size, shape and composition of each microlaser, allowing precise labeling of individual cells.
Real-Time Imaging of Lung Lesions During Surgery
Targeted molecular agents cause lung adenocarcinomas to fluoresce during surgery, according to pilot report.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!