Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First-ever Blueprint of a Minimal Cell is More Complex than Expected

Published: Monday, November 30, 2009
Last Updated: Monday, November 30, 2009
Bookmark and Share
EMBL and CRG scientists reveal what a self-sufficient cell can’t do without.

What are the bare essentials of life, the indispensable ingredients required to produce a cell that can survive on its own? Can we describe the molecular anatomy of a cell, and understand how an entire organism functions as a system? These are just some of the questions that scientists in a partnership between the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Centre de Regulacio Genòmica (CRG) in Barcelona, Spain, set out to address.

In three papers published back-to-back today in Science, they provide the first comprehensive picture of a minimal cell, based on an extensive quantitative study of the biology of the bacterium that causes atypical pneumonia, Mycoplasma pneumoniae. The study uncovers fascinating novelties relevant to bacterial biology and shows that even the simplest of cells is more complex than expected.

Mycoplasma pneumoniae is a small, single-cell bacterium that causes atypical pneumonia in humans. It is also one of the smallest prokaryotes – organisms whose cells have no nucleus – that don’t depend on a host’s cellular machinery to reproduce.

This is why the six research groups which set out to characterize a minimal cell in a project headed by scientists Peer Bork, Anne-Claude Gavin and Luis Serrano chose M. pneumoniae as a model: it is complex enough to survive on its own, but small and, theoretically, simple enough to represent a minimal cell – and to enable a global analysis.

A network of research groups at EMBL’s Structural and Computational Biology Unit and CRG’s EMBL-CRG Systems Biology Partnership Unit approached the bacterium at three different levels. One team of scientists described M. pneumoniae’s transcriptome, identifying all the RNA molecules, or transcripts, produced from its DNA, under various environmental conditions. Another defined all the metabolic reactions that occurred in it, collectively known as its metabolome, under the same conditions. A third team identified every multi-protein complex the bacterium produced, thus characterizing its proteome organization.

“At all three levels, we found M. pneumoniae was more complex than we expected”, says Luis Serrano, co-initiator of the project at EMBL and now head of the Systems Biology Department at CRG.

When studying both its proteome and its metabolome, the scientists found many molecules were multifunctional, with metabolic enzymes catalyzing multiple reactions, and other proteins each taking part in more than one protein complex. They also found that M. pneumoniae couples biological processes in space and time, with the pieces of cellular machinery involved in two consecutive steps in a biological process often being assembled together.

Remarkably, the regulation of this bacterium’s transcriptome is much more similar to that of eukaryotes – organisms whose cells have a nucleus – than previously thought. As in eukaryotes, a large proportion of the transcripts produced from M. pneumoniae’s DNA are not translated into proteins. And although its genes are arranged in groups as is typical of bacteria, M. pneumoniae doesn’t always transcribe all the genes in a group together, but can selectively express or repress individual genes within each group.

Unlike that of other, larger, bacteria, M. pneumoniae’s metabolism doesn’t appear to be geared towards multiplying as quickly as possible, perhaps because of its pathogenic lifestyle. Another surprise was the fact that, although it has a very small genome, this bacterium is incredibly flexible and readily adjusts its metabolism to drastic changes in environmental conditions. This adaptability and its underlying regulatory mechanisms mean M. pneumoniae has the potential to evolve quickly, and all the above are features it also shares with other, more evolved organisms.

“The key lies in these shared features”, explains Anne-Claude Gavin, an EMBL group leader who headed the study of the bacterium’s proteome: “Those are the things that not even the simplest organism can do without and that have remained untouched by millions of years of evolution – the bare essentials of life”.

This study required a wide range of expertise, to understand M. pneumoniae’s molecular organization at such different scales and integrate all the resulting information into a comprehensive picture of how the whole organism functions as a system – an approach called systems biology.

“Within EMBL’s Structural and Computational Biology Unit we have a unique combination of methods, and we pooled them all together for this project”, says Peer Bork, joint head of the unit, co-initiator of the project, and responsible for the computational analysis. “In partnership with the CRG group we thus could build a complete overall picture based on detailed studies at very different levels.” Bork was recently awarded the Royal Society and Académie des Sciences Microsoft Award for the advancement of science using computational methods. Serrano was recently awarded a European Research Council Senior grant.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
Friday, July 17, 2015
EMBL Scientists Solve Decades-Old Cell Biology Puzzle
Behaviour of clathrin proteins, crucial for endocytosis, is clarified using new imaging techniques.
Saturday, June 20, 2015
It Runs in the Family
Distantly related viruses share a common machinery for replication.
Saturday, May 23, 2015
The Battle for Iron
Understanding anaemias of the chronically ill.
Saturday, February 07, 2015
Protecting us from Our Cells
Growth factor boosts natural defence against auto-immune disorders.
Tuesday, November 04, 2014
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Wired for Change
First steps of gene regulation evolution revealed.
Monday, August 05, 2013
More than Meets the Eye
‘Transformer’ protein makes different sized transport pods.
Tuesday, May 29, 2012
Rigged to Explode?
Inherited mutation links exploding chromosomes to cancer.
Wednesday, April 11, 2012
Multi-tasking Protein Provides New Approaches for Anti-tuberculosis Drugs
Scientists from EMBL reveal new insights into the workings of enzymes from a group of bacteria including Mycobacterium tuberculosis.
Thursday, February 17, 2011
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.
Friday, September 03, 2010
EMBL Scientists Identify Proteins that Ensure Iron Balance
Researchers discover that newly found group of proteins are required for the functioning of mitochondria, the cell’s energy factories.
Monday, August 09, 2010
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production.
Monday, June 14, 2010
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!