Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Potential New 'Twist' in Breast Cancer Detection

Published: Monday, December 07, 2009
Last Updated: Monday, December 07, 2009
Bookmark and Share
Mouse studies reveal new and better picture of stem cells that may fuel some breast cancers.

Working with mice, scientists at Johns Hopkins publishing in the December issue of Neoplasia have shown that a protein made by a gene called "Twist" may be the proverbial red flag that can accurately distinguish stem cells that drive aggressive, metastatic breast cancer from other breast cancer cells.

Building on recent work suggesting that it is a relatively rare subgroup of stem cells in breast tumors that drives breast cancer, scientists have surmised that this subgroup of cells must have some very distinctive qualities and characteristics.

In experiments designed to identify those special qualities, the Hopkins team focused on the gene "Twist" (or TWIST1) – named for its winding shape – because of its known role as the producer of a so-called transcription factor, or protein that switches on or off other genes. Twist is an oncogene, one of many genes we are born with that have the potential to turn normal cells into malignant ones.

"Our experiments show that Twist is a driving force among a lot of other players in causing some forms of breast cancer," says Venu Raman, Ph.D., associate professor of radiology and oncology, Johns Hopkins University School of Medicine. "The protein it makes is one of a growing collection of markers that, when present, flag a tumor cell as a breast cancer stem cell."

Previous stem cell research identified a Twist-promoted process known as epithelial-to-mesenchymal transition, or EMT, as an important marker denoting the special subgroup of breast cancer stem cells. EMT essentially gets cells to detach from a primary tumor and metastasize. The new Hopkins research shows that the presence of Twist, along with changes in two other biomarkers – CD 24 and CD44 – even without EMT, announces the presence of this critical sub-group of stem cells.

"The conventional thinking is that the EMT is crucial for recognizing the breast cancer cell as stem cells, and the potential for metastasis, but our studies show that when Twist shows up in excess or even at all, it can work independently of EMT," says Farhad Vesuna, Ph.D., an instructor of radiology in the Johns Hopkins University School of Medicine. "EMT is not mandatory for identifying a breast cancer stem cell."

Working with human breast cancer cells transplanted into mice, all of which had the oncogene Twist, the scientists tagged cell surface markers CD24 and CD44 with fluorescent chemicals. Following isolation of the subpopulation containing high CD44 and low CD24 by flow cytometry, they counted 20 of these putative breast cancer stem cells. They then injected these cells into the breast tissue of 12 mice. All developed cancerous tumors.

"Normally, it takes approximately a million cells to grow a xenograft, or transplanted tumor," Vesuna says. "And here we're talking just 20 cells. There is something about these cells – something different compared to the whole bulk of the tumor cell – that makes them potent. That's the acid test – if you can take a very small number of purified "stem cells" and grow a cancerous tumor, this means you have a pure population."

Previously, the team showed that 65 percent of aggressive breast cancers have more Twist compared to lower-grade breast cancers, and that Twist-expressing cells are more resistant to radiation.

Twist is what scientists refer to as an oncogene, one that if expressed when and where it's not supposed to be expressed, causes oncogenesis or cancer because the molecules and pathways that once regulated it and kept it in check are gone.

This finding – that Twist is integral to the breast cancer stem cell phenotype – has fundamental implications for early detection, treatment and prevention, Raman says. Some cancer treatments may kill ordinary tumor cells while sparing the rare cancer stem cell population, sabotaging treatment efforts. More effective cancer therapies likely require drugs that kill this important stem cell population.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Wednesday, April 27, 2016
Hepatitis C Virus Testing Guidelines Miss Too Many Cases
Urban emergency departments a good place to enact universal screening for adults.
Friday, April 15, 2016
How Cancer Stem Cells Thrive When Oxygen Is Scarce
Scientists from The John Hopkins University show cancer stem cells thrive in low oxygen environments using similar mechanisms to embryonic stem cells.
Wednesday, March 30, 2016
Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections
NIH-funded project aims for fast identification and destruction of deadly bacteria.
Monday, April 27, 2015
Triple-Negative Breast Cancer Immune Therapy
Experimental immune therapy tested in preliminary study of women with triple-negative breast cancer.
Tuesday, April 21, 2015
A New Tool for Understanding ALS: Patients’ Brain Cells
Researchers create a free public library of versatile stem cells from ALS patients.
Thursday, April 16, 2015
Tumor-Only Genetic Sequencing May Misguide Cancer Treatment in Nearly Half of All Patients
Johns Hopkins scientists say the genetic code of tumors must be compared to patients’ noncancer genome to get a true picture.
Thursday, April 16, 2015
New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis
Potential drug for pancreatic cancer now being tested in animals.
Thursday, January 22, 2015
Training the Immune System to Destroy Cure-Defying Mutant HIV
This study reveals the reason behind the failure of luring HIV out of hiding, and charts a therapeutic strategy to eradicate mutant HIV-infected cells.
Thursday, January 08, 2015
New Genetic and Epigenetic Contributors to Diabetes Identified
Comparison of fat cells in mice and men hints at how genes and environment conspire to produce disease.
Wednesday, January 07, 2015
When DNA Gets Sent to Time-Out
New details revealed in the coordinated regulation of large stretches of DNA.
Tuesday, January 06, 2015
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Monday, January 05, 2015
Multiple Allergic Reactions Traced To Single Protein
Points to new strategy to reduce allergic responses to many medications.
Thursday, December 18, 2014
Brain Inflammation A Hallmark Of Autism
Johns Hopkins study is largest so far of gene expression in autism brains.
Thursday, December 11, 2014
Up-close Look at Cancer on the Move
Microscopic view of metastasis could give insight about how to keep cancer in check.
Friday, November 07, 2014
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!