Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

EMBL Scientists Uncover the Gene Responsible for Keeping Females Female

Published: Friday, December 11, 2009
Last Updated: Friday, December 11, 2009
Bookmark and Share
Study, published in Cell, challenges the long-held assumption that the development of female traits is a default pathway.

Is it a boy or a girl? Expecting parents may be accustomed to this question, but contrary to what they may think, the answer doesn’t depend solely on their child’s sex chromosomes.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and the Medical Research Council’s National Institute for Medical Research (NIMR) at Mill Hill, UK discovered that if a specific gene located on a non-sex chromosome is turned off, cells in the ovaries of adult female mice turn into cells typically found in testes.

Their study, published today in Cell, challenges the long-held assumption that the development of female traits is a default pathway. At the same time, it grants a valuable insight into how sex determination evolved.

In humans and most other mammals, an individual’s sex is determined by its sex chromosomes: females have two X chromosomes, males have one X and one Y. Scientists had long assumed that the female pathway – the development of ovaries and all the other traits that make a female – was a kind of default: if it had a gene called Sry, which is located on the Y chromosome, an embryo would develop into a male, if not, then the result would be a female. But in adult animals it is the male pathway that needs to be actively suppressed, as Mathias Treier and his team at EMBL discovered.

A gene called Foxl2, which is located on an autosome – a chromosome other than the sex chromosomes – and therefore present in both sexes, was known to play an important role in the female pathway, but its precise function remained elusive. To elucidate the matter, Treier and colleagues ablated, or ‘turned off’, this gene in the ovaries of adult female mice.

“We were surprised by the results,” says Treier, “We expected the mice to stop producing oocytes, but what happened was much more dramatic: somatic cells which support the developing egg took on the characteristics of the cells which usually support developing sperm, and the gender-specific hormone-producing cells also switched from a female to a male cell type.”

Thus, the scientists discovered that Foxl2 plays a crucial role in keeping female mice female.

Teaming up with the group of Robin Lovell-Badge at the NIMR, they were able to decipher together the underlying molecular mechanism. They showed that FOXL2 and estrogen receptor act together by repressing a DNA element called TESCO that Lovell-Badge’s group had previously identified to regulate expression of the testes-promoting gene Sox9. Sox9 was known to function in the embryo to make the early gonads become testes rather than ovaries, but the new studies suggest that it can perform the same task in the adult. FOXL2 is therefore critical to keep Sox9 turned off in ovaries throughout life.

“As most vertebrates have Foxl2, estrogen receptors and Sox9,” Lovell-Badge explains, “this mechanism for maintaining female traits probably appeared early on in the evolution of vertebrates, while Sry and the mammalian Y chromosome are relatively new inventions.”

These findings will have wide-ranging implications for reproductive medicine and may, for instance, help to treat sex differentiation disorders in children, for example where XY individuals develop as females or XX as males, and understand the masculinising effects of menopause on some women.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
Friday, July 17, 2015
EMBL Scientists Solve Decades-Old Cell Biology Puzzle
Behaviour of clathrin proteins, crucial for endocytosis, is clarified using new imaging techniques.
Saturday, June 20, 2015
It Runs in the Family
Distantly related viruses share a common machinery for replication.
Saturday, May 23, 2015
The Battle for Iron
Understanding anaemias of the chronically ill.
Saturday, February 07, 2015
Protecting us from Our Cells
Growth factor boosts natural defence against auto-immune disorders.
Tuesday, November 04, 2014
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Wired for Change
First steps of gene regulation evolution revealed.
Monday, August 05, 2013
More than Meets the Eye
‘Transformer’ protein makes different sized transport pods.
Tuesday, May 29, 2012
Rigged to Explode?
Inherited mutation links exploding chromosomes to cancer.
Wednesday, April 11, 2012
Multi-tasking Protein Provides New Approaches for Anti-tuberculosis Drugs
Scientists from EMBL reveal new insights into the workings of enzymes from a group of bacteria including Mycobacterium tuberculosis.
Thursday, February 17, 2011
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.
Friday, September 03, 2010
EMBL Scientists Identify Proteins that Ensure Iron Balance
Researchers discover that newly found group of proteins are required for the functioning of mitochondria, the cell’s energy factories.
Monday, August 09, 2010
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production.
Monday, June 14, 2010
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!