Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

UT Houston Researchers Launch Phase II Trial Of Stem Cells And Acute Heart Attack

Published: Tuesday, December 15, 2009
Last Updated: Tuesday, December 15, 2009
Bookmark and Share
Phase I results show mesenchymal stem cells safe, may help repair heart.

The second phase of a clinical trial testing a new stem cell-based therapy on injured heart muscle has been launched by researchers at The University of Texas Medical School at Houston. It is the only study site in the Texas Medical Center.

Patient Melvin Dyess, far right, receives an intravenous solution as part of a trial on stem cells and heart attack patients. Ali Denktas, M.D., center, assistant professor of cardiology at The University of Texas Medical School at Houston, is principal investigator for the Houston site. At left is nurse and UT Medical School at Houston research coordinator Gerrie Wynn.

Results from Phase I of the trial are published in the Journal of the American College of Cardiology. Researchers reported that patients were treated safely with intravenous adult human mesenchymal stem cells (Prochymal) after a heart attack. In addition, they had fewer arrhythmias, improved heart and lung function, and improvement in overall condition.  

"We are able to use a stem cell product that is on the shelf without prior preparation of anything from the patient, and this product appears to be able to help the heart muscle recover after a heart attack," said Ali E. Denktas, M.D., the trial's Houston site principal investigator and assistant professor of cardiology at the UT Medical School at Houston. "This means patients have the potential to recover quicker with less risk of an immediate secondary attack."

In many cell-based therapies, doctors harvest the patient's own cells, process them and then return them to the patient. Prochymal, developed by Osiris Therapeutics, Inc., contains adult mesenchymal stem cells from healthy donors. The cells can be stored at an emergency center until needed. For purposes of the Phase II study, Prochymal must be administered within seven days of a heart attack.

Yesterday, researchers enrolled the first patient for the Phase II study at the Houston site. Heart attack patient Melvin Dyess, 49, received an intravenous infusion of either the stem cells or placebo as part of the protocol of the double-blind study. The procedure took place at the Memorial Hermann Heart & Vascular Institute-Texas Medical Center.

Denktas said UT Medical School researchers will continue to enroll willing patients into the Phase II study who are admitted to Memorial Hermann-Texas Medical Center. Neither patients nor their physicians know whether they received the stem cell drug.

Affecting 1.1 million Americans every year, heart attacks are caused by disruptions to the heart's blood supply. Muscle cells can die within minutes of the blood being reduced or cut off. The body has a limited capacity to regenerate new heart muscles and repair wounds to the heart.

Denktas said while cell-based therapies including Prochymal appear to work, researchers are not sure why. Previous studies have shown that adult stem cells have a "homing device" that sends them to the point of injury in the human body.

"Studies with acute myocardial infarction (heart attack) show that if you give cells of some sort to the heart relatively quickly, five to 10 days after the heart attack, they nest themselves in the heart and the heart improves. But, why it improves is debatable," Denktas said. Adult mesenchymal stem cells appear to have anti-inflammatory, anti-fibrotic, and tissue regenerative capacities, as shown in both animal studies and human clinical trials, according to Osiris Therapeutics, Inc.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fighting Pain with Ketamine
Researchers at the Texas A&M Health Science Center are using ketamine, a drug that already exists as an anesthetic, to treat pain.
Friday, October 16, 2015
NASA Award Grant To Develop Platform For Detecting Amino Acids
A University of Texas at Arlington researcher will develop a platform that could help scientists move one step closer to answering whether life may have existed “out there” or if we are really alone in the universe.
Tuesday, September 08, 2015
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Wednesday, August 26, 2015
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Tuesday, August 18, 2015
Critical New Insights on DNA Repair
The enzyme fumarase is key to reversing genetic damage leading to cancer and therapy resistance.
Wednesday, August 05, 2015
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Thursday, July 23, 2015
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Monday, July 20, 2015
Partly Human Yeast Show A Common Ancestor’s Lasting Legacy
Edward Marcotte and his colleagues at the University of Texas at Austin created hundreds of strains of humanized yeast by inserting into each a single human gene and turning off the corresponding yeast gene.
Tuesday, May 26, 2015
Cancer-Causing Virus Blocks Human Immune Response
Epstein-Barr virus shown to outwit the human immune response using microRNAs.
Wednesday, January 28, 2015
Researchers Reveal Genomic Diversity Of Individual Lung Tumors
Findings suggest sequencing a single region of a localized tumor will identify driver mutations.
Friday, October 10, 2014
How Fluid Flow Influences Neuron Growth
A University of Texas at Arlington team exploring how neuron growth can be controlled in the lab and, possibly, in the human body has published a new paper in Nature Scientific Reports on how fluid flow could play a significant role.
Wednesday, October 08, 2014
3-in-1 Spectroscopy System Improves Skin Cancer Detection
The new device may detect cancerous skin lesions early on, leading to better treatment outcomes and ultimately saving lives.
Thursday, August 07, 2014
Method Developed at UT Arlington Allows Quantitative Nanoscopic Imaging Through Silicon
A team of scientists has figured out how to quantitatively observe cellular processes taking place on so-called “lab on a chip” devices in a silicon environment.
Monday, October 07, 2013
Chlamydia Protein has an Odd Structure
Research could lead to new ways to combat this sexually transmitted disease.
Thursday, June 13, 2013
Researchers Reveal New Enzyme that Acts as Innate Immunity Sensor
Two studies by researchers at UT Southwestern Medical Center could lead to new treatments for lupus and other autoimmune diseases and strengthen current therapies for viral, bacterial, and parasitic infections.
Monday, February 18, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos