Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

EMBL Scientists Identify Proteins that Ensure Iron Balance

Published: Monday, August 09, 2010
Last Updated: Monday, August 09, 2010
Bookmark and Share
Researchers discover that newly found group of proteins are required for the functioning of mitochondria, the cell’s energy factories.

Most organisms need iron to survive, but too much iron is toxic, and can cause fatal organ failure. The same is true inside cells, where iron balance must also be maintained.

In a study published in Cell Metabolism, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered that a group of proteins named IRPs ensure that this iron balance is kept and as such are essential for cell survival. More specifically, they found that IRPs are required for the functioning of mitochondria, the cell’s energy factories.

Mitochondria need iron in order to function, but they also convert iron into other chemical forms used throughout the cell: iron sulphur clusters and haem – one of the building blocks of haemoglobin. Thanks to new mouse models they engineered, the EMBL scientists have been able to selectively shut down IRP function in specific cell types such as hepatocytes, liver cells that carry out multiple vital metabolic functions.

“Mice whose liver cells can’t produce IRPs die of liver failure a few days after birth,” says Bruno Galy, Staff Scientist in Matthias Hentze’s group at EMBL, who spearheaded the work: “The mitochondria in those cells have structural defects and don’t function properly, because they don’t have enough iron.”

Galy and colleagues found that in cells that cannot produce IRPs, the mechanisms for iron export and storage go into over-drive, while iron import is drastically reduced. This combination of factors leads to an iron shortage in the cell. As a consequence, the mitochondria don’t receive enough iron, so they can’t function properly, and can’t make enough haem and iron sulphur clusters available to the cell machinery that depends on them. In short, the role of IRPs is to ensure that there is enough iron available in the cell to sustain mitochondrial iron needs.

“We have indications that this is probably a general process by which most cells control their iron content and secure mitochondrial iron sufficiency” Hentze concludes.

This mechanism for regulating iron balance could be particularly important in cells with very high mitochondrial iron needs, such as red blood cell precursors that manufacture copious amounts of haem for oxygen transport. However, this may well be a double-edged sword. Indeed, there are situations in which mitochondria get iron but are not able to make use of it. The cell interprets this as a sign of mitochondrial iron insufficiency and responds by activating IRPs, which ultimately results in detrimental iron overloading of mitochondria. This may underlie the pathology of several diseases including inherited sideroblastic anaemias – in which cells are unable to incorporate iron into haemoglobin – or the neurodegenerative disorder Friedreich’s ataxia, which the EMBL scientists are currently investigating.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
Friday, July 17, 2015
EMBL Scientists Solve Decades-Old Cell Biology Puzzle
Behaviour of clathrin proteins, crucial for endocytosis, is clarified using new imaging techniques.
Saturday, June 20, 2015
It Runs in the Family
Distantly related viruses share a common machinery for replication.
Saturday, May 23, 2015
The Battle for Iron
Understanding anaemias of the chronically ill.
Saturday, February 07, 2015
Protecting us from Our Cells
Growth factor boosts natural defence against auto-immune disorders.
Tuesday, November 04, 2014
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Wired for Change
First steps of gene regulation evolution revealed.
Monday, August 05, 2013
More than Meets the Eye
‘Transformer’ protein makes different sized transport pods.
Tuesday, May 29, 2012
Rigged to Explode?
Inherited mutation links exploding chromosomes to cancer.
Wednesday, April 11, 2012
Multi-tasking Protein Provides New Approaches for Anti-tuberculosis Drugs
Scientists from EMBL reveal new insights into the workings of enzymes from a group of bacteria including Mycobacterium tuberculosis.
Thursday, February 17, 2011
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.
Friday, September 03, 2010
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production.
Monday, June 14, 2010
EMBL-EBI Researchers Present Global Map of Human Gene Expression
The full analysis behind the view of the genetic activities determining our appearance, function and behavior is published in Nature Biotechnology.
Thursday, April 08, 2010
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!