Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms

Published: Friday, September 03, 2010
Last Updated: Friday, September 03, 2010
Bookmark and Share
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.

Our cerebral cortex, or pallium, is a big part of what makes us human: art, literature and science would not exist had this most fascinating part of our brain not emerged in some less intelligent ancestor in prehistoric times. But when did this occur and what were these ancestors? Unexpectedly, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now discovered a true counterpart of the cerebral cortex in an invertebrate, a marine worm.

Their findings are published today in Cell, and give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.

It has long been clear that, in evolutionary terms, we share our pallium with other vertebrates, but beyond that was mystery. This is because even invertebrates that are clearly related to us – such as the fish-like amphioxus – appear to have no similar brain structures, nothing that points to a shared evolutionary past. But EMBL scientists have now found brain structures related to the vertebrate pallium in a very distant cousin – the marine ragworm Platynereis dumerilii, a relative of the earthworm - which last shared an ancestor with us around 600 million years ago.

“Two stunning conclusions emerge from this finding”, explains Detlev Arendt, who headed the study: “First, the pallium is much older than anyone would have assumed, probably as old as higher animals themselves. Second, we learn that it came ‘out of the blue’ – as an adaptation to early marine life in Precambrian oceans.”

To uncover the evolutionary origins of our brain, EMBL scientist Raju Tomer, who designed and conducted the work, took an unprecedentedly deep look at the regions of Platynereis dumerilii’s brain responsible for processing olfactory information – the mushroom-bodies. He developed a new technique, called cellular profiling by image registration (PrImR), which is the first to enable scientists to investigate a large number of genes in a compact brain and determine which are turned on simultaneously. This technique enabled Tomer to determine each cell’s molecular fingerprint, defining cell types according to the genes they express, rather than just based on their shape and location as was done before.

“Comparing the molecular fingerprints of the developing ragworms’ mushroom-bodies to existing information on the vertebrate pallium,” Tomer says, “ it became clear that they are too similar to be of independent origin and must share a common evolutionary precursor.”

This ancestral structure was likely a group of densely packed cells, which received and processed information about smell and directly controlled locomotion. It may have enabled our ancestors crawling over the sea floor to identify food sources, move towards them, and integrate previous experiences into some sort of learning.

 “Most people thought that invertebrate mushroom-bodies and vertebrate pallium had arisen independently during the course of evolution, but we have proven this was most probably not the case,” says Tomer. Arendt concludes: “The evolutionary history of our cerebral cortex has to be rewritten.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drugging Bacteria
Commonly used diabetes drug impacts gut bacteria more than disease itself.
Saturday, December 05, 2015
Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Tuesday, October 06, 2015
Ages Apart
Multifaceted approach measured how brain and liver age differently.
Saturday, September 19, 2015
Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
Friday, July 17, 2015
EMBL Scientists Solve Decades-Old Cell Biology Puzzle
Behaviour of clathrin proteins, crucial for endocytosis, is clarified using new imaging techniques.
Saturday, June 20, 2015
It Runs in the Family
Distantly related viruses share a common machinery for replication.
Saturday, May 23, 2015
The Battle for Iron
Understanding anaemias of the chronically ill.
Saturday, February 07, 2015
Protecting us from Our Cells
Growth factor boosts natural defence against auto-immune disorders.
Tuesday, November 04, 2014
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Wired for Change
First steps of gene regulation evolution revealed.
Monday, August 05, 2013
More than Meets the Eye
‘Transformer’ protein makes different sized transport pods.
Tuesday, May 29, 2012
Rigged to Explode?
Inherited mutation links exploding chromosomes to cancer.
Wednesday, April 11, 2012
Multi-tasking Protein Provides New Approaches for Anti-tuberculosis Drugs
Scientists from EMBL reveal new insights into the workings of enzymes from a group of bacteria including Mycobacterium tuberculosis.
Thursday, February 17, 2011
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!