Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Details Structure of Potential Target for HIV and Cancer Drugs

Published: Tuesday, October 12, 2010
Last Updated: Tuesday, October 12, 2010
Bookmark and Share
The high-resolution structure sheds light on how the molecule functions and could point to ways to control its activity to lock out HIV and cancer's spread.

Structural biologists funded by the National Institutes of Health have determined the three-dimensional structure of a molecule involved in HIV infection and in many forms of cancer. The high-resolution structure sheds light on how the molecule functions and could point to ways to control its activity, potentially locking out HIV and stalling cancer's spread.

The molecule, CXCR4, is part of a large family of proteins called G-protein coupled receptors (GPCRs). These molecules span the cell's membrane and transmit signals from the external environment to the cell's interior. GPCRs help control practically every bodily process, including cell growth, hormone secretion and light perception. Nearly half of all drugs on the market target these receptors.

"Scientists have been studying CXCR4 for years but have only been able to guess at what it looks like," said NIH Director Francis S. Collins, M.D., Ph.D. "Now that we have its structure, we have a much clearer picture of how this medically important molecule works, opening up entire new areas for drug discovery."

The researchers, led by Raymond C. Stevens, Ph.D., of the Scripps Research Institute in La Jolla, Calif., report their findings in the Oct. 7, 2010, advance online issue of the journal Science. The study received support from two major NIH initiatives: the structural biology program of the NIH Common Fund and the Protein Structure Initiative (PSI).

While a molecule called CD4 is the primary receptor for HIV, CD4 is not sufficient for the virus to penetrate cells. In 1996, a team of researchers at NIH's National Institute of Allergy and Infectious Diseases (NIAID) discovered that CXCR4 acts as a co-receptor by helping HIV enter cells.

Normally, CXCR4 helps activate the immune system and stimulate cell movement. But when the signals that activate the receptor aren't properly regulated, CXCR4 can spur the growth and spread of cancer cells. To date, CXCR4 has been linked to more than 20 types of cancer.

The Scripps Research scientists set out to shed light on how CXCR4 functions by capturing snapshots of the protein by using a structure determination method called X-ray crystallography. To understand how natural molecules might bind and signal through the receptor and to see how potential drugs could interact with it, they examined CXCR4 bound to known inhibitors of its activity.

Determining the structure of CXCR4 represented a major challenge because membrane proteins are notoriously tricky to coax into the crystal form required for the X-ray technique. After three years of optimizing conditions for producing, stabilizing and crystallizing the molecule, the scientists finally generated five distinct structures of CXCR4.

The structures showed that CXCR4 molecules form closely linked pairs, confirming data from other experiments indicating that pairing plays a role in the proper functioning of the receptor. With this knowledge, scientists can delve into how the duos might regulate CXCR4's activity and better understand how CXCR4 functions under normal and disease conditions.

The images also showed that CXCR4 is shaped like two white wine glasses touching in a toast, with the inhibitors bound at the sides of the bowls. By detailing these contacts, the researchers said the pictures suggest how to design compounds that regulate CXCR4 activity or block HIV entry into cells. If developed into drugs, such compounds could offer new ways to treat HIV infection or cancer.

"An approach to determining protein structures that was developed with support from the NIH Common Fund and the PSI is now paying huge dividends," said Jeremy M. Berg, Ph.D., director of the National Institute of General Medical Sciences, which supports the PSI. "It illustrates how technical progress provides a foundation for rapid advances, and it also showcases the benefits of collaborations between structural biologists and scientists working in other fields for addressing fundamentally important problems with tremendous potential for medical applications."

The research also was supported by NIAID and the National Center for Research Resources, also part of NIH.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Test Reliably Detects Inherited Immune Deficiency in Newborns
NIH-supported study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.
Wednesday, August 20, 2014
Drug Combination May be Highly Effective in Recurrent Ovarian Cancer
The drugs were tested in a phase I combination study followed by a randomized phase 2 trial.
Monday, June 02, 2014
TCGA Bladder Cancer Study Reveals Potential Drug Targets, Similarities to Several Cancers
Investigators have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.
Thursday, January 30, 2014
Gene Variants Found Associated With Human Immune System, Autoimmune Disease
Numerous studies have reported that certain diseases are inherited. But genetics also plays a role in immune response, affecting our ability to stave off disease.
Friday, September 27, 2013
NIH Program Explores the Use of Genomic Sequencing in Newborn Healthcare
Can sequencing of newborns’ genomes provide useful medical information beyond what current newborn screening already provides?
Wednesday, September 04, 2013
Investigational Malaria Vaccine Found Safe and Protective
An investigational malaria vaccine has been found to be safe, to generate an immune system response, and to offer protection against malaria infection in healthy adults.
Friday, August 09, 2013
Clues to Congenital Heart Disease
Non-inherited mutations in hundreds of genes together account for about 1 in 10 cases of severe congenital heart defects.
Wednesday, May 22, 2013
New NIH funding for two Autism Centers of Excellence
A total of 11 centers now funded for up to five years.
Wednesday, April 03, 2013
Modelling Dynamics in Protein Crystal Structures by Ensemble Refinement
Detailed information about the dynamic behaviour of proteins is essential for a proper understanding of a variety of processes, including catalysis, ligand binding and protein–protein interactions.
Monday, January 28, 2013
Gene Therapy for Salivary Gland Shows Promise
An experimental trial showed that gene therapy can be performed safely in the human salivary gland.
Tuesday, December 04, 2012
Therapy Repairs Ravaged Immune System
Gene therapy can safely restore immune function in children with severe combined immunodeficiency and allow some to stop taking painful weekly injections.
Tuesday, October 02, 2012
Gene Therapy Restores Sense of Smell in Mice
Mice that were unable to smell from birth gained the ability to smell when researchers used gene therapy to regrow structures called cilia on cells that detect odor.
Tuesday, October 02, 2012
Researchers Identify Protein Essential for Embryo Implantation
NIH researchers discovery shows how the hormone progesterone suppresses the growth of the uterus's lining so that a fertilized egg can implant in the uterus.
Tuesday, February 22, 2011
The National Database for Autism Research Announces its First Data Release
Autism Spectrum Disorder researchers now can use data from over 10,000 participants enrolled in ASD studies.
Wednesday, December 01, 2010
Researchers Discover Key Mutation in Acute Myeloid Leukemia
Researchers have discovered mutations in a particular gene that affects the treatment prognosis for some patients with acute myeloid leukemia (AML), an aggressive blood cancer that kills 9,000 Americans annually.
Monday, November 15, 2010
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!