Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Launches Genotype-Tissue Expression Project

Published: Wednesday, October 13, 2010
Last Updated: Wednesday, October 13, 2010
Bookmark and Share
Project to chart influence of DNA changes on gene function in human tissues and organs.

The National Institutes of Health has announced awards to support an initiative to understand how genetic variation may control gene activity and its relationship to disease. Launched as a pilot phase, the Genotype-Tissue Expression (GTEx) project will create a resource researchers can use to study inherited susceptibility to illness and will establish a tissue bank for future biological studies.

Each cell in the human body contains a complete set of genes, yet not every gene is turned on, or expressed, in every cell in the body. To function properly, each type of cell turns different genes on and off, depending on what the cell does. For example, some genes that are turned on in a liver cell will be turned off in a heart cell.

In addition, recent genome-wide association studies have identified several hundred common genetic variants-inherited changes in the DNA sequence of the human genome- that play a role in an individual's susceptibility to complex human illnesses such as heart disease, mental illnesses, cancer and diabetes.

GTEx seeks to combine these two observations to generate data to study systematically how gene expression is regulated in different organs in the human body. This would be a key step to explain the underlying biology of many organ-specific diseases.

GTEx launches as a two-year pilot study supported by the NIH Common Fund.

Researchers will use GTEx data to follow up on findings from genome-wide association studies and as a resource for the general study of gene expression networks.

For instance, a researcher interested in cardiovascular disease could access GTEx data to view all the genetic variants in the human genome that affect gene expression in the heart. For particularly promising genes whose expression is correlated with a disease-associated genetic variant, functional studies in model organisms - such as mouse models of the disease - could then be targeted to further explore the mechanism by which genetic variants increase the risks of illness.

"GTEx will begin to provide researchers with a comprehensive view of genetic variation and a more precise understanding of how it affects genes critical to the normal function of tissues and organs," said NIH Director Francis S. Collins, M.D., Ph.D. "This resource will add a new dimension to our understanding of human biology and the mechanisms that lead to disease."

GTEx's initial phase will test the feasibility of collecting high-quality ribonucleic acid (RNA) from 30 to 50 tissue sites in the body, including the brain, lung, heart and muscle. A particular form of RNA, called messenger RNA, is a direct measure of gene expression.

Samples will come from approximately 160 deceased donors identified through autopsy or organ and tissue transplant programs. In addition, a small subset of normal tissues will be collected from living surgery patients as a comparison group. Extensive clinical and medical information for all GTEx donors will also be collected.

The DNA from each donor will be genotyped, a process that catalogs genetic variants across an individual's genome. Then, using 'next-generation sequencing' technologies, the RNA in each individual's tissues will be sequenced using a new technique that accurately and comprehensively measures the level of gene expression.

"This kind of study is now possible because of recent advances in DNA sequencing technologies and analytical tools" said National Human Genome Research Institute (NHGRI) Director Eric D. Green, M.D., Ph.D., who is co-chair of the GTEx project. "GTEx will allow us to gain unprecedented insights into the influence of genetic variation on human health."

The GTEx pilot project comprises three biospecimen source sites, and a laboratory data analysis and coordinating center. Led by the National Cancer Institute's cancer Human Biobank (caHUB) initiative, the biospecimen source sites will recruit donors and collect the tissues.

Each biospecimen source site will ship the specimens, except the brain and spinal cords, to caHUB. A portion of each specimen will be sent to the laboratory, data analysis and coordinating center for molecular analysis. The biospecimen source sites, principal investigators and approximate funding levels are:

National Disease Research Interchange, Philadelphia John Lonsdale, Ph.D., and Jeffrey Thomas

$3.5 million

Roswell Park Cancer Institute, Buffalo, N.Y.

Barbara Foster, Ph.D.

$2 million

Science Care, Inc., Phoenix, Ariz.

Harold Magazine, Ph.D. and Mark Kartub, M.D.

$750,000

The brains and spinal cords will be sent to the Brain Endowment Bank at the University of Miami, overseen by principal investigator Deborah Mash, Ph.D. The bank has received a three-year supplement award of $362,000 to isolate cells from regions of the brain that will be sent to the GTEx laboratory, data analysis and coordinating center. The remaining brain and spinal cord tissue will be banked and made available for future NIH-sponsored studies of the central nervous system.

The National Disease Research Interchange will also collaborate with Laura A. Siminoff, Ph.D., Virginia Commonwealth University, Richmond, who has received approximately $283,000 to conduct a study of the ethical, legal and social issues related to donor recruitment and consent.

The laboratory, data analysis and coordinating center will be responsible for the overall coordination of GTEx activities and will serve as the molecular and statistical analysis laboratory. Co-principal investigators and approximate funding level are:

Broad Institute, Inc., Cambridge, Mass.

Wendy Winckler, Ph.D. and Kristin Ardlie, Ph.D.

$11.4 million

Another component of the GTEx pilot project will foster the development of improved statistical methods to analyze data generated by the project. The principal investigators who will develop these tools and approximate funding levels are:

Nancy J. Cox, Ph.D. and Dan L. Nicolae, Ph.D., University of Chicago Using the Transcriptome for Single Nucleotide Polymorphisms and Gene Annotation $642,000 (2 years)

Emmanouil Dermitzakis, Ph.D., Roderic Guigo, Ph.D., Daphne Koller, Ph.D. and Mark I. McCarthy, M.D., University of Geneva, Switzerland Methods for High-Resolution Analysis of Genetic Effects on Gene Expression $662,000 (2 years)

Jun S. Liu, Ph.D., Harvard University, Cambridge, Mass.

Epistatic and Cross Tissue Analysis for Human Gene Expression Traits $594,000 (2 years)

Jonathan K. Pritchard, Ph.D., University of Chicago Statistical Analysis of Gene eQTLs $676,000 (2 years)

Ivan Rusyn, M.D., Ph.D., Andrew B. Nobel, Ph.D. and Fred A. Wright, Ph.D., University of North Carolina at Chapel Hill Facilitating GTEx, disease and Gene-Environment Analyses via Fast Expression eQTL $659,000 (2 years)

"The development of robust statistical tools that can maximize the usefulness of the unique data that GTEx will generate is important to understanding the contribution of genetic variation to human health and disease," said National Institute of Mental Health Director (NIMH) Thomas R. Insel, M.D., co-chair of the GTEx project.

A GTEx database will be developed by the National Center for Biotechnology Information (NCBI), part of the NIH's National Library of Medicine. The database will allow users to view and download computed GTEx results and provide a controlled access system for de-identified individual-level genotype, expression, and clinical data through NCBI's database of Genotypes and Phenotypes (dbGaP).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Genetic Mutation May Lead to the Progressive Loss of Motor Function
Researchers at NIH have identified the genetic cause and a possible therapeutic target for a rare form of pediatric progressive neuropathy.
Thursday, August 04, 2016
Newly Launched Genomic Data Commons To Facilitate Data And Clinical Information Sharing
The GDC will centralize, standardize and make accessible data from NCI programs such as The Cancer Genome Atlas (TCGA) and its pediatric equivalent, to Generate Effective Treatments.
Tuesday, June 07, 2016
Marijuana use Disorder is Common and often Untreated
Researchers at NIH have found that the marijuana use disorder linked to substance use/mental disorders and disability.
Saturday, March 05, 2016
Peanut Allergy Prevention Strategy
Researchers at NIH have suggested that the early peanut consumption will offer lasting protection.
Saturday, March 05, 2016
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Friday, February 12, 2016
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Thursday, February 11, 2016
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Wednesday, February 10, 2016
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
Tuesday, February 09, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Friday, February 05, 2016
Test Reliably Detects Inherited Immune Deficiency in Newborns
NIH-supported study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.
Wednesday, August 20, 2014
Drug Combination May be Highly Effective in Recurrent Ovarian Cancer
The drugs were tested in a phase I combination study followed by a randomized phase 2 trial.
Monday, June 02, 2014
TCGA Bladder Cancer Study Reveals Potential Drug Targets, Similarities to Several Cancers
Investigators have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.
Thursday, January 30, 2014
Gene Variants Found Associated With Human Immune System, Autoimmune Disease
Numerous studies have reported that certain diseases are inherited. But genetics also plays a role in immune response, affecting our ability to stave off disease.
Friday, September 27, 2013
NIH Program Explores the Use of Genomic Sequencing in Newborn Healthcare
Can sequencing of newborns’ genomes provide useful medical information beyond what current newborn screening already provides?
Wednesday, September 04, 2013
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Bird Flu Confirmed in the Netherlands
An outbreak of H5 avian influenza was confirmed in the Flevoland province of the Netherlands.
Pasteurised Bacterium Reduces Obesity and Diabetes
Researchers have discovered that an intestinal bacterium provides a lasting effect on the intestinal barrier.
Turning Off Asthma Attacks
Researchers discover a critical cellular “off” switch for the inflammatory immune response that causes asthma attacks.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!