Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genomics unlocks key to Mendel's pea flowers

Published: Wednesday, October 13, 2010
Last Updated: Wednesday, October 13, 2010
Bookmark and Share
John Innes Centre scientists have helped discover the key to one of biology's most well-known experiments - the gene that controls pea flower colour, used by Gregor Mendel in his initial studies of inheritance.

John Innes Centre scientists have helped discover the key to one of biology's most well-known experiments - the gene that controls pea flower colour, used by Gregor Mendel in his initial studies of inheritance. 150 years ago Gregor Mendel planted peas segregating for flower colour. Now an international group of scientists, publishing in the journal PLoS-ONE, has revealed the underlying molecular genetics behind this experiment, identifying genes that control flower colour in pea plants. Peas have been used to study inheritance and genetics for hundreds of years, from the eighteenth century investigations into inheritance, through Gregor Mendel's celebrated experiments, to developing improved pea varieties. "Mendel is known as the father of modern genetics, using pea characteristics to demonstrate inheritance patterns," says Dr Roger Hellens, Science Leader of the Genomics Group at Plant & Food Research, New Zealand. The purple colour of wild type pea flowers, and flowers of many other plants, is a consequence of the accumulation of pigment molecules called anthocyanins and the biochemistry of their production has been studied for many years. The paper describes two pea genes, known as A and A2, that regulate the production of anthocyanins. The work was a collaboration between scientists at the John Innes Centre, an institute of BBSRC, New Zealand's Plant & Food Research, URGV in France and the USDA's Agricultural Research Services. "This was a real collaborative effort, it would not have happened without all of these people participating, especially if Roger had not had the enthusiasm to nail a problem that has been bugging him for years," says Professor Noel Ellis, of the Department of Crop Genetics at the John Innes Centre. "By comparing the pea DNA sequences to those of other well-characterised plants, such as petunia, we have determined that Mendel's gene is a transcription factor that controls the anthocyanin biosynthesis pathway. This transcription factor, when mutated, becomes inactive and anthocyanin is not produced, resulting in white flowers," says Dr Hellens. The John Innes Centre houses a collection of around 3,500 pea lines that was used in this study. The collection includes material from wild, cultivated and semi-cultivated sources, some dating back to the nineteenth century. This germplasm collection is a valuable genetic resource for scientists and plant breeders looking for improved pea varieties. "We used information from our previous genotyping of the JIC pea germplasm collection to identify exotic lines where we would most likely find rare alleles of Mendel's gene. Finding a rare second allele was important for independent confirmation of the identity of the gene," says Prof. Ellis. "This is the fourth of Mendel's seven genes to be characterised at the molecular level: it is also the second where JIC has been involved." The John Innes Centre is now looking into the germplasm collection for genes and traits that could be used to make peas higher-yielding or of better quality. Peas are able to fix nitrogen from the air through symbiotic relationships with bacteria housed in nodules in their roots. This makes them less dependent on the addition of nitrogenous fertilisers which are a major economic and environmental cost associated with farming because they require high levels of energy for their production and their use is a major source of nitrous oxide, a potent greenhouse gas. The increased production of peas and other legumes is a good way of ensuring future food security with low environmental cost. Funding was received from Defra and the EU FP6 Grain Legumes Integrated Project, the New Zealand Foundation for Research Science and Technology and BBSRC. ENDS Notes to editors Reference: "Identification of Mendel's white flower character" will be published in PLoS ONE on Monday, October 11 2010. http://dx.plos.org/10.1371/journal.pone.0013230


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Flu Sends Scientists Dipping for Gold
Researchers on the Norwich Research Park have patented a quick, simple dipstick flu test using sugar labelled with gold.
Wednesday, December 11, 2013
“Growing” Medicines in Plants Requires new Regulations
Scientists say amending an EU directive on GMOs could help stimulate innovation in making cheaper vaccines, pharmaceuticals and organic plastics using plants.
Wednesday, February 20, 2013
New Method for Associating Genetic Variation With Crop Traits
A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.
Tuesday, July 24, 2012
Major Grant from Gates Foundation to UK Center to Develop Self-Fertilizing Crops for the Developing World
The John Innes Centre in UK will lead a $9.8m research project to investigate whether it is possible to initiate a symbiosis between cereal crops and bacteria. The symbiosis could help cereals access nitrogen from the air to improve yields.
Monday, July 16, 2012
Plant Research Reveals New Role for Gene Silencing Protein
A DICER protein, known to produce tiny RNAs in cells, also helps complete an important step in gene expression, according to research on Arabidopsis thaliana.
Friday, March 30, 2012
UK: Norfolk GM potato trial withstands blight
A trial plot of genetically-modified potatoes at Norfolk's John Innes Centre has withstood five days of intense late-blight infection.
Thursday, August 26, 2010
Decoy Makes Sitting Duck of Superbugs
A DNA-based therapy could slash the development time of new drugs to combat antibiotic resistant superbugs.
Tuesday, December 04, 2007
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!