Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genomics unlocks key to Mendel's pea flowers

Published: Wednesday, October 13, 2010
Last Updated: Wednesday, October 13, 2010
Bookmark and Share
John Innes Centre scientists have helped discover the key to one of biology's most well-known experiments - the gene that controls pea flower colour, used by Gregor Mendel in his initial studies of inheritance.

John Innes Centre scientists have helped discover the key to one of biology's most well-known experiments - the gene that controls pea flower colour, used by Gregor Mendel in his initial studies of inheritance. 150 years ago Gregor Mendel planted peas segregating for flower colour. Now an international group of scientists, publishing in the journal PLoS-ONE, has revealed the underlying molecular genetics behind this experiment, identifying genes that control flower colour in pea plants. Peas have been used to study inheritance and genetics for hundreds of years, from the eighteenth century investigations into inheritance, through Gregor Mendel's celebrated experiments, to developing improved pea varieties. "Mendel is known as the father of modern genetics, using pea characteristics to demonstrate inheritance patterns," says Dr Roger Hellens, Science Leader of the Genomics Group at Plant & Food Research, New Zealand. The purple colour of wild type pea flowers, and flowers of many other plants, is a consequence of the accumulation of pigment molecules called anthocyanins and the biochemistry of their production has been studied for many years. The paper describes two pea genes, known as A and A2, that regulate the production of anthocyanins. The work was a collaboration between scientists at the John Innes Centre, an institute of BBSRC, New Zealand's Plant & Food Research, URGV in France and the USDA's Agricultural Research Services. "This was a real collaborative effort, it would not have happened without all of these people participating, especially if Roger had not had the enthusiasm to nail a problem that has been bugging him for years," says Professor Noel Ellis, of the Department of Crop Genetics at the John Innes Centre. "By comparing the pea DNA sequences to those of other well-characterised plants, such as petunia, we have determined that Mendel's gene is a transcription factor that controls the anthocyanin biosynthesis pathway. This transcription factor, when mutated, becomes inactive and anthocyanin is not produced, resulting in white flowers," says Dr Hellens. The John Innes Centre houses a collection of around 3,500 pea lines that was used in this study. The collection includes material from wild, cultivated and semi-cultivated sources, some dating back to the nineteenth century. This germplasm collection is a valuable genetic resource for scientists and plant breeders looking for improved pea varieties. "We used information from our previous genotyping of the JIC pea germplasm collection to identify exotic lines where we would most likely find rare alleles of Mendel's gene. Finding a rare second allele was important for independent confirmation of the identity of the gene," says Prof. Ellis. "This is the fourth of Mendel's seven genes to be characterised at the molecular level: it is also the second where JIC has been involved." The John Innes Centre is now looking into the germplasm collection for genes and traits that could be used to make peas higher-yielding or of better quality. Peas are able to fix nitrogen from the air through symbiotic relationships with bacteria housed in nodules in their roots. This makes them less dependent on the addition of nitrogenous fertilisers which are a major economic and environmental cost associated with farming because they require high levels of energy for their production and their use is a major source of nitrous oxide, a potent greenhouse gas. The increased production of peas and other legumes is a good way of ensuring future food security with low environmental cost. Funding was received from Defra and the EU FP6 Grain Legumes Integrated Project, the New Zealand Foundation for Research Science and Technology and BBSRC. ENDS Notes to editors Reference: "Identification of Mendel's white flower character" will be published in PLoS ONE on Monday, October 11 2010. http://dx.plos.org/10.1371/journal.pone.0013230


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Super Wheat Brought Closer to Reality
Scientists at the John Innes Centre (JIC) and The Sainsbury Laboratory (TSL) have pioneered a new gene-detecting technology which, if deployed correctly could lead to the creation of a new elite variety of wheat with durable resistance to disease.
Tuesday, April 26, 2016
Flu Sends Scientists Dipping for Gold
Researchers on the Norwich Research Park have patented a quick, simple dipstick flu test using sugar labelled with gold.
Wednesday, December 11, 2013
“Growing” Medicines in Plants Requires new Regulations
Scientists say amending an EU directive on GMOs could help stimulate innovation in making cheaper vaccines, pharmaceuticals and organic plastics using plants.
Wednesday, February 20, 2013
New Method for Associating Genetic Variation With Crop Traits
A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.
Tuesday, July 24, 2012
Major Grant from Gates Foundation to UK Center to Develop Self-Fertilizing Crops for the Developing World
The John Innes Centre in UK will lead a $9.8m research project to investigate whether it is possible to initiate a symbiosis between cereal crops and bacteria. The symbiosis could help cereals access nitrogen from the air to improve yields.
Monday, July 16, 2012
Plant Research Reveals New Role for Gene Silencing Protein
A DICER protein, known to produce tiny RNAs in cells, also helps complete an important step in gene expression, according to research on Arabidopsis thaliana.
Friday, March 30, 2012
UK: Norfolk GM potato trial withstands blight
A trial plot of genetically-modified potatoes at Norfolk's John Innes Centre has withstood five days of intense late-blight infection.
Thursday, August 26, 2010
Decoy Makes Sitting Duck of Superbugs
A DNA-based therapy could slash the development time of new drugs to combat antibiotic resistant superbugs.
Tuesday, December 04, 2007
Scientific News
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Faster, Cheaper Way to Produce New Antibiotics
A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol.
Process Contaminants in Vegetable Oils and Foods
Glycerol-based process contaminants found in palm oil, but also in other vegetable oils, margarines and some processed foods, raise potential health concerns for average consumers of these foods in all young age groups, and for high consumers in all age groups.
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!