Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Anti-wrinkle Cream Could Hold Key to Tissue Growth

Published: Monday, November 01, 2010
Last Updated: Monday, November 01, 2010
Bookmark and Share
The first study to investigate the chemical structure of an advanced class of anti-wrinkle cream has shown that it could be used to promote wound healing and regenerative medicine.

Chemists at the University of Reading researched the nanostructure of a cosmetic ingredient used in high performance skincare creams – a peptide amphiphile (PA).

Many skincare products use peptides to treat wrinkles. Skin is made up mostly of collagen; it is the foundation that gives your skin its support and thickness. Young people have lots of collagen and taut, smooth skin. In contrast, older people have much less collagen and thin, wrinkled skin.

Collagen is protein and is made up of long chains of amino acids strung together, like chains of linked building blocks. When it is broken down, short segments form, called peptides, and these act as a signal to tell your skin it is damaged and needs to make new collagen. The new research has revealed how the chemical structure of the PA allows this to happen.

Professor Ian Hamley, from the Department of Chemistry, investigated the PA found in Matrixyl – an ingredient used in high end/state-of-the-art anti-ageing creams. He found that the PA contains a dense network of fine fibres that can act as an excellent scaffold for collagen to adhere to. This also has potential applications in tissue growth.

Professor Hamley said: “This the first report to our knowledge on a peptide amphiphile in current commercial use. Understanding the self-assembled structure is important in developing the next generation of collagen-stimulating peptides for applications not just for cosmetic skincare products but for wound healing and in regenerative medicine.”

The paper, Fibrillar Superstructure from Extended Nanotapes Formed by a Collagen-Stimulating Peptide’ by Valeria Castelletto, Ian W Hamley*, Javier Perez, Ludmilla Anezgaux and Dganit Danino, is published in Chemical Communications, DOI: 10.1039/c0cc03793a


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Wednesday, August 12, 2015
Britain Needs 'Super-Sub Bees'
Rare bees and insects must be protected to give British farmers a strong ‘reserve squad’ of pollinating species and prevent potential food shortages in the future, scientists say.
Thursday, June 18, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
Non-Toxic Approach to Treating Variety of Cancers
A team of researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine recently discovered a novel, non-toxic approach to treating a wide variety of cancers.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
Real-Time Imaging of Embryo Development Could Pave the Way
Researchers at IMCB have developed advanced microscopy technologies to monitor embryo development for more effective human reproduction therapies.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!