Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Researchers Discover Key Mutation in Acute Myeloid Leukemia

Published: Monday, November 15, 2010
Last Updated: Monday, November 15, 2010
Bookmark and Share
Researchers have discovered mutations in a particular gene that affects the treatment prognosis for some patients with acute myeloid leukemia (AML), an aggressive blood cancer that kills 9,000 Americans annually.

The Washington University School of Medicine in St. Louis team initially discovered a mutation by completely sequencing the genome of a single AML patient. They then used targeted DNA sequencing on nearly 300 additional AML patient samples to confirm that mutations discovered in one gene correlated with the disease. Although genetic changes previously were found in AML, this work shows that newly discovered mutations in a single gene, called DNA methyltransferase 3A or DNMT3A, appear responsible for treatment failure in a significant number of AML patients.  The finding should prove rapidly useful in treating patients and which may provide a molecular target against which to develop new drugs.

"This is a wonderful example of the ability of the unbiased application of whole-genome, DNA sequencing to discover a frequently mutated gene in cancer that was previously unknown to be correlated with prognosis," said Eric D. Green, M.D., Ph.D., director of the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, which co-funded this study. "This may quickly lead to a change in medical care because physicians may now screen for these mutations in patients and adjust their treatment accordingly."

The study was carried out by researchers from the Washington University Genome Center and the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine. In the study, the researchers found DNMT3A mutations in 21 percent of all AML patients studied and in 34 percent of the patients classified as having an intermediate risk of treatment failure based on widely used laboratory tests of their leukemia cells. More than half of AML patients are classified as having an intermediate risk and are then typically treated with standard chemotherapy.

For patients with the DNMT3A mutation, however, chemotherapy may not be the best first treatment.  "We have not had a reliable way to predict which of these patients will respond to the standard treatment," said lead author and hematologist Timothy Ley, M.D., the Lewis T. and Rosalind B. Apple Professor of Medicine at Washington University School of Medicine. "In the cases we studied, mutations in the DNMT3A gene trump everything else we've found so far to predict adverse outcomes in intermediate-risk AML."

Patients with the mutation survived for a median of just over a year, compared to the median survival of nearly 3.5 years among those without the mutation.  "Based on what we found, if a patient has a DNMT3A mutation, it looks like you're going to want to treat very aggressively, perhaps go straight to bone marrow transplantation or a more intensive chemotherapy regimen," says senior author Richard K. Wilson, Ph.D., director of Washington University's Genome Center.

As part of the new research, the investigators looked to see which treatments the patients received and how they fared. Those with DNMT3A mutations treated with bone marrow transplants lived longer than those who received only chemotherapy, but the Washington University investigators caution that the sample size was small and follow-up studies will be needed to confirm these initial findings.

"This discovery is a clear example of the power of comprehensive analysis of cancer genomes," said Francis S. Collins, M.D., Ph.D., director of the National Institutes of Health. "By using high-throughput DNA sequencing, researchers will be able to discover all of the common genetic changes that contribute to cancer. With that knowledge, a growing list of targeted treatments will be developed, based on a firm biological understanding of the disease."
Launched in 2006 as a partnership between the National Cancer Institute and the National Human Genome Research Institute, both NIH components, The Cancer Genome Atlas (TCGA) has developed a comprehensive strategy for comparing the genome of cancer cells to the genome of normal cells from the same patient.  This allows the identification of genetic changes that cause the uncontrolled growth of a cancer cell. TCGA also biologically characterizes the tumors in several other ways.  Together, the TCGA data can be linked to clinical data to help researchers understand the characteristics of the tumor being studied.  The project plans to analyze up to 500 patient samples of tumors and normal tissues in 20 major types of cancer over the next five years.

"Cancer is a genetic disease," said NCI Director Harold Varmus, M.D.  "Every discovery teaches us more and more about the many ways genes can be deranged in a tumor cell to make it grow out of control. While we generally describe some 200 types of cancer based on where they originate in the body, genetics may show us that there are thousands of different types, each requiring different treatments. Fortunately, we are now acquiring the tools we need to understand them and to make important progress."    

Washington University is a TCGA participant and has pioneered the use of comprehensive, genome-wide approaches to study cancer.  Although the AML study just reported was not part of TCGA, the Washington University team has donated nearly 200 AML samples for comprehensive genomic analysis to the TCGA program.  The AML results and all TCGA analyses can be found at its data portal, <>, which provides direct access to the genomic analytic datasets, with selected patient genetic and clinical data to researchers qualified through an NIH review and approval process designed to safeguard participant privacy.

"This work represents the culmination of years of collaborative research that has focused on cataloging the mutations involved in AML," says co-author John Dipersio, M.D., Ph.D., chief of the division of oncology and deputy director of the Siteman Cancer Center. "This work provides a pathway and a foundation for doing the same in all other malignancies that could potentially lead to more effective, targeted therapies.

AML is a cancer of the blood. Like most cancers, it develops from mutations that occur in cells over the course of many years during a person's life and not from inherited genetic errors present at birth. AML strikes some 13,000 Americans annually, killing 9,000.  The disease occurs most often in adults and becomes more difficult to treat as patients age. The five-year survival rate for adults with AML is about 20 percent.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Genetic Mutation May Lead to the Progressive Loss of Motor Function
Researchers at NIH have identified the genetic cause and a possible therapeutic target for a rare form of pediatric progressive neuropathy.
Thursday, August 04, 2016
Newly Launched Genomic Data Commons To Facilitate Data And Clinical Information Sharing
The GDC will centralize, standardize and make accessible data from NCI programs such as The Cancer Genome Atlas (TCGA) and its pediatric equivalent, to Generate Effective Treatments.
Tuesday, June 07, 2016
Marijuana use Disorder is Common and often Untreated
Researchers at NIH have found that the marijuana use disorder linked to substance use/mental disorders and disability.
Saturday, March 05, 2016
Peanut Allergy Prevention Strategy
Researchers at NIH have suggested that the early peanut consumption will offer lasting protection.
Saturday, March 05, 2016
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Friday, February 12, 2016
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Thursday, February 11, 2016
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Wednesday, February 10, 2016
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
Tuesday, February 09, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Friday, February 05, 2016
Test Reliably Detects Inherited Immune Deficiency in Newborns
NIH-supported study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.
Wednesday, August 20, 2014
Drug Combination May be Highly Effective in Recurrent Ovarian Cancer
The drugs were tested in a phase I combination study followed by a randomized phase 2 trial.
Monday, June 02, 2014
TCGA Bladder Cancer Study Reveals Potential Drug Targets, Similarities to Several Cancers
Investigators have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.
Thursday, January 30, 2014
Gene Variants Found Associated With Human Immune System, Autoimmune Disease
Numerous studies have reported that certain diseases are inherited. But genetics also plays a role in immune response, affecting our ability to stave off disease.
Friday, September 27, 2013
NIH Program Explores the Use of Genomic Sequencing in Newborn Healthcare
Can sequencing of newborns’ genomes provide useful medical information beyond what current newborn screening already provides?
Wednesday, September 04, 2013
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
NIH Contributes to Global Effort to Prevent and Manage Lung Diseases
The large scale trial will measure health benefits of clean cookstoves.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos