Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Study of Genetic Disease Reveals new Path to Cell Reprogramming

Published: Wednesday, November 24, 2010
Last Updated: Wednesday, November 24, 2010
Bookmark and Share
Harvard scientists find a method to rewind the internal clock of a mature cell and drive it back into an adult stem-cell stage.

Researchers at Harvard Medical School and the Harvard School of Dental Medicine have found that by mimicking a rare genetic disorder in a dish they can rewind the internal clock of a mature cell and drive it back into an adult stem-cell stage. This new “stem cell” can then branch out into a variety of differentiated cell types, both in culture and in animal models.

“This certainly has implications for personalized medicine, especially in the area of tissue engineering,” says Bjorn Olsen, the Hersey Professor of Cell Biology at Harvard Medical School and dean of research at the Harvard School of Dental Medicine.

These findings appeared online in Nature Medicine on Nov. 21.

Fibrodysplasia Ossificans Progressiva (FOP), which affects fewer than 1,000 people worldwide, is a horrific genetic disease in which acute inflammation causes soft tissue to morph into cartilage and bone. Over the course of a few decades, patients gradually become ossified, as though parts of their body have turned to stone. There is no cure or treatment.

Damian Medici, an instructor of medicine at Harvard Medical School and Beth Israel Deaconess Medical Center, found that, unlike normal skeletal tissue, the pathological cartilage and bone cells from these patients contained biomarkers specific for endothelial cells. This finding led him to question whether the cartilage and bone growing in soft tissues of FOP patients had an endothelial origin.

Medici and his colleagues transferred the mutated gene that causes FOP into normal endothelial cells. Unexpectedly, the endothelial cells converted into a cell type nearly identical to what are called mesenchymal stem cells, or adult stem cells that can differentiate into bone, cartilage, muscle, fat, and even nerve cells.

What’s more, through further experiments the researchers found that instead of using the mutated gene to induce the transformation, they could incubate endothelial cells with either one of two specific proteins (growth factors TGF-beta2 and BMP4) whose cellular interactions mimicked the effects of the mutated gene, providing a more efficient way to reprogram the cells.

Afterward, Medici was able to take these reprogrammed cells and, in both culture dishes and animal models, coax them into developing into a group of related tissue types.

“It’s important to clarify that these new cells are not exactly the same as mesenchymal stem cells from bone marrow,” says Medici. “There are some important differences. However, they appear to have all the potential and plasticity of mesenchymal stem cells.”

“The power of this system is that we are simply repeating and honing a process that occurs in nature,” says Olsen. “In that sense, it’s less artificial than other current methods for reprogramming cells.”

According to study collaborator Frederick Kaplan, Isaac & Rose Nassau Professor of Orthopaedic Molecular Medicine at the University of Pennsylvania School of Medicine and an expert on FOP, “While we want to use this knowledge to stop the renegade bone formation of FOP, these new findings provide the first glimpse of how to recruit and harness the process to build extra bone for those who desperately need it.”

Medici and Olsen echo this sentiment, stating that the most direct application for these findings is the field of tissue engineering and personalized medicine. It is conceivable that transplant patients may one day have some of their own endothelial cells extracted, reprogrammed, and then grown into the desired tissue type for implantation. Host rejection would not be an issue.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Natural History of Neurons
Diverse mutations reveal lineage of brain cells.
Monday, October 05, 2015
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
Monday, September 28, 2015
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tuesday, August 25, 2015
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Tuesday, August 25, 2015
The Autism-GI Link
Inflammatory bowel disease found more prevalent in ASD patients.
Tuesday, August 18, 2015
Facebook for the Proteome
Researchers have developed a network for describing protein-protein interactions that can then be used to examine protein interactions that may have biological or clinical significance.
Friday, July 17, 2015
Bedside Ebola Diagnostic
A new test can accurately diagnose Ebola virus disease within minutes, providing clinicians with crucial information for treating patients and containing outbreaks.
Tuesday, June 30, 2015
HIV Paradox
Investigators from Harvard Medical School, Massachusetts General Hospital, and the Ragon Institute of MGH, MIT and Harvard have added another piece to the puzzle of how a small group of individuals known as elite controllers are able to control HIV infection without drug treatment.
Tuesday, June 16, 2015
Rapid Determination of the Chromosomal Phase of Genetic Variants
Researchers have developed a rapid, scalable, and cost-effective method for chromosomal phasing that provides researchers with a new method to determine if genetic variants are linked on the same chromosome.
Wednesday, June 03, 2015
Sequence, Shuffle, Repeat
Researchers identify origin of chromosomal oddity in some cancer cells.
Monday, June 01, 2015
FISHing for Insight
Improved imaging illuminates chromosomes in detail.
Tuesday, May 26, 2015
On Time, On Target
A novel tool could help personalize cancer treatments.
Monday, March 02, 2015
Paper Test for Ebola
Prototype is designed to detect diseases and deliver real-time epidemiological data.
Friday, February 06, 2015
New Techniques Reveal “Extreme” Gene Copy Range
New findings give scientists the first precise way to study places in the genome where the number of copies of a sequence varies widely from person to person.
Monday, February 02, 2015
Predicting Sepsis
Altered white-blood-cell motion in burn patients may warn of infection.
Thursday, December 18, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos