Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study of Genetic Disease Reveals new Path to Cell Reprogramming

Published: Wednesday, November 24, 2010
Last Updated: Wednesday, November 24, 2010
Bookmark and Share
Harvard scientists find a method to rewind the internal clock of a mature cell and drive it back into an adult stem-cell stage.

Researchers at Harvard Medical School and the Harvard School of Dental Medicine have found that by mimicking a rare genetic disorder in a dish they can rewind the internal clock of a mature cell and drive it back into an adult stem-cell stage. This new “stem cell” can then branch out into a variety of differentiated cell types, both in culture and in animal models.

“This certainly has implications for personalized medicine, especially in the area of tissue engineering,” says Bjorn Olsen, the Hersey Professor of Cell Biology at Harvard Medical School and dean of research at the Harvard School of Dental Medicine.

These findings appeared online in Nature Medicine on Nov. 21.

Fibrodysplasia Ossificans Progressiva (FOP), which affects fewer than 1,000 people worldwide, is a horrific genetic disease in which acute inflammation causes soft tissue to morph into cartilage and bone. Over the course of a few decades, patients gradually become ossified, as though parts of their body have turned to stone. There is no cure or treatment.

Damian Medici, an instructor of medicine at Harvard Medical School and Beth Israel Deaconess Medical Center, found that, unlike normal skeletal tissue, the pathological cartilage and bone cells from these patients contained biomarkers specific for endothelial cells. This finding led him to question whether the cartilage and bone growing in soft tissues of FOP patients had an endothelial origin.

Medici and his colleagues transferred the mutated gene that causes FOP into normal endothelial cells. Unexpectedly, the endothelial cells converted into a cell type nearly identical to what are called mesenchymal stem cells, or adult stem cells that can differentiate into bone, cartilage, muscle, fat, and even nerve cells.

What’s more, through further experiments the researchers found that instead of using the mutated gene to induce the transformation, they could incubate endothelial cells with either one of two specific proteins (growth factors TGF-beta2 and BMP4) whose cellular interactions mimicked the effects of the mutated gene, providing a more efficient way to reprogram the cells.

Afterward, Medici was able to take these reprogrammed cells and, in both culture dishes and animal models, coax them into developing into a group of related tissue types.

“It’s important to clarify that these new cells are not exactly the same as mesenchymal stem cells from bone marrow,” says Medici. “There are some important differences. However, they appear to have all the potential and plasticity of mesenchymal stem cells.”

“The power of this system is that we are simply repeating and honing a process that occurs in nature,” says Olsen. “In that sense, it’s less artificial than other current methods for reprogramming cells.”

According to study collaborator Frederick Kaplan, Isaac & Rose Nassau Professor of Orthopaedic Molecular Medicine at the University of Pennsylvania School of Medicine and an expert on FOP, “While we want to use this knowledge to stop the renegade bone formation of FOP, these new findings provide the first glimpse of how to recruit and harness the process to build extra bone for those who desperately need it.”

Medici and Olsen echo this sentiment, stating that the most direct application for these findings is the field of tissue engineering and personalized medicine. It is conceivable that transplant patients may one day have some of their own endothelial cells extracted, reprogrammed, and then grown into the desired tissue type for implantation. Host rejection would not be an issue.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Repurposing Genes for Brain Development
Mammalian bone gene may be repurposed to promote cognition in humans.
Tuesday, November 29, 2016
Color-Coded Stem Cells
Researchers develop colour-coding tool for tracking live blood stem cells over time.
Thursday, November 24, 2016
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Thursday, November 24, 2016
Heart Atlas
Single-cell sequencing gives new insights into how genetic activity in mouse heart cells changed over time.
Monday, November 21, 2016
Uncovering Elusive Proteins
Researchers have determined the complete structure of elusive proteins, known as tetraspanins, for the first time.
Wednesday, November 02, 2016
Rewriting E.Coli
Researchers have created a synthetic, modified E.coli genome to have favourable properties for medical research.
Tuesday, October 11, 2016
Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
Friday, September 16, 2016
Keeping Up with HIV Mutations
Team develops technology to increase the speed of HIV development in mice to model and quickly test vaccination strategies.
Friday, September 09, 2016
Enzyme that Triggers Cell Demise in ALS Identified
Scientists from Harvard have identified a key instigator of nerve cell damage in people with amyotrophic lateral sclerosis (ALS).
Thursday, August 25, 2016
Misdiagnosis in HCM Tests
Genetic tests for potentially fatal heart anomaly can misdiagnose condition in black Americans.
Thursday, August 18, 2016
Uncovering Constructor Proteins
Scientists have discovered a new bacterial cell wall builder that could be a target for antibiotic development.
Wednesday, August 17, 2016
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Thursday, July 28, 2016
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Tuesday, April 26, 2016
Fighting Early Stage Alzheimer's
Mouse study suggests possibility of curbing early synapse loss in Alzheimer’s.
Monday, April 04, 2016
Breaking the Chain
Compound prevents multidrug-resistant fungi from pumping out drugs.
Tuesday, February 23, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!