Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BGI and GT Life Sciences Announce Complete Sequencing of CHO Genome

Published: Monday, January 10, 2011
Last Updated: Monday, January 10, 2011
Bookmark and Share
CHO whole genome sequence data has been assembled and early access is now available.

GT Life Sciences, Inc., and BGI announced that they have successfully completed for the first time the sequencing of the Chinese hamster ovary (CHO-K1) genome. Early access to the genome is now available.

Chinese hamster ovary cell lines, or CHO cell lines, are mammalian cells that have been derived from the ovary of the Chinese hamster and are used widely in biological research and in the production of therapeutic proteins. Today at least 70% of all therapeutic proteins are produced in CHO cells.

Currently the worldwide market for therapeutic proteins totals approximately $100 billion. The sequencing of the CHO genome will yield a wealth of new information and understanding of CHO cell functions, accelerating the discovery and development of new recombinant protein therapeutics. By increasing the productivity of CHO cell lines used in many pharmaceutical expression systems, production costs can be reduced.

"Sequencing the CHO genome represents a major milestone in optimizing this widely used mammalian cell line both for pharmaceutical research and for production of therapeutic proteins," stated Bernhard Palsson, Ph.D., Galetti Professor of Bioengineering and Adjunct Professor Medicine at the University of California, San Diego. "This newly available knowledge will bring multiple benefits, including media optimization and improved cell growth, protein production, glycosylation, and cell line engineering. Ultimately, it brings genome-scale science to CHO-based production of biopharmaceuticals."

GT Life Sciences' established CHOmics business platform for metabolic modeling and engineering of mammalian cells has already proven effective in optimizing CHO cell media and developing novel selectable markers. "The availability of the sequence together with a complete genome-scale model of CHO metabolism is proving to be a powerful tool that will allow us to deliver the next generation of process technologies for biopharmaceutical production in CHO and other mammalian cell lines," added Iman Famili, Ph.D., Sr. Director, Research and Development at GT Life Sciences.

"The complete sequencing of CHO-K1 genome is a major step forward in the application of genomics in the production of biopharmaceuticals," stated Dr. Jun Wang, Executive Director of BGI. "GT's CHOmics platform provides a valuable foundation for CHO genomics research and the study of CHO cell metabolism. BGI's sequencing and bioinformatics capabilities, combined with GT's CHOmics platform, will contribute to the transformation of biopharmaceutical production."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BGI Opens Genome Research Center in Europe
The company opens its first European Genome Research Center located in Copenhagen Bio Science Park (COBIS).
Friday, February 10, 2012
Scientists Complete Sequencing Tibetan Antelope Genome
The genome sequencing is expected to explain the pathogenesis of chronic plateau sickness.
Monday, December 28, 2009
Beijing Genomics Institute Signs Global Site License with CLC bio for Sequencing Software Platform
The global site license agreement, for CLC Genomics Workbench, covers all researchers at all BGI sites, both inside and outside of China.
Friday, July 04, 2008
Scientific News
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Faster, Cheaper Way to Produce New Antibiotics
A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol.
Process Contaminants in Vegetable Oils and Foods
Glycerol-based process contaminants found in palm oil, but also in other vegetable oils, margarines and some processed foods, raise potential health concerns for average consumers of these foods in all young age groups, and for high consumers in all age groups.
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!