Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Researchers Identify Protein Essential for Embryo Implantation

Published: Tuesday, February 22, 2011
Last Updated: Tuesday, February 22, 2011
Bookmark and Share
NIH researchers discovery shows how the hormone progesterone suppresses the growth of the uterus's lining so that a fertilized egg can implant in the uterus.

Researchers funded by the National Institutes of Health have identified a key step in the establishment of a pregnancy. Their discovery shows how the hormone progesterone suppresses the growth of the uterus's lining so that a fertilized egg can implant in the uterus.

This key step, the researchers discovered, occurs when a protein called Hand2 suppresses the chemical activity that stimulates growth of the uterine lining, also known as the uterine epithelium.

At the start of each menstrual cycle, levels of the hormone estrogen begin to rise. Estrogen stimulates the cells in the uterine lining to increase in number, causing the epithelium to thicken. However, as the ovary releases an egg, levels of the hormone progesterone begin to rise.

The elevated progesterone levels put the brakes on the estrogen-driven growth of the uterine epithelium. In this study, the researchers discovered that Hand2, previously found to increase in uterine cells as progesterone levels rise, is the switch that turns off estrogen's stimulating effect on the epithelium.

The finding may contribute to understanding some forms of unexplained female infertility. The finding also has implications for understanding disorders in which growth of the uterine epithelium surges out of control, such as endometrial cancer or endometriosis, a disease in which endometrial tissue appears on the ovaries, bowel, or other tissues outside the uterus.

"Progesterone-like medications are used to treat a wide variety of conditions, such as relieving the symptoms of menopause, as part of infertility treatments, and for preventing preterm birth," said Louis DePaolo, Ph.D., head of the Reproductive Sciences Branch at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute that funded the study.

DePaolo continued, "Understanding how Hand2 exerts its effect on the growth of the uterine lining may lead to the development of new medications and therapeutics that make progesterone treatment more effective but which have fewer side effects. Also, understanding how Hand2 functions might provide insights into disorders like endometriosis, which resist progesterone treatment."

First author Quanxi Li, of the University of Illinois at Urbana-Champaign, was joined on the research team by University of Illinois colleagues Athilakshmi Kannan, Paul S. Cooke, Milan K. Bagchi and Indrani C. Bagchi; Francesco J. DeMayo and John P. Lydon of Baylor College of Medicine, Houston; Hiroyuki Yamagishi of Keio University School of Medicine, Japan; and Deepak Srivastava of the University of California, San Francisco. Their findings appear in the Feb. 18 issue of Science.

The research was supported by the NICHD Specialized Cooperative Centers Program in Reproduction and Infertility Research (, a collaborative network of basic and clinical scientists who study ways of improving reproductive health.

For the current study, the researchers developed a laboratory strain of mice in which the uterus fails to make Hand2.

The researchers found that, after exposure to progesterone halted growth of the uterine epithelium in mice with functioning genes for Hand2. However, despite exposure to progesterone, epithelial growth continued unchecked in the mice without Hand2 genes.

The researchers also discovered that, at the time of implantation, Hand2 was expressed in uterine cells that lie beneath the surface layer of epithelial cells. Through a series of experiments, the researchers determined that estrogen stimulates the production of growth factors, which cause cells in the epithelial layer to multiply and grow. When progesterone is produced, it spurs the release of Hand2, which stops the production of growth factors. The uterine epithelial cells then stop multiplying, mature, and become receptive to the embryo.

"This information helps us understand how the interplay of hormones prepares the uterus to host and support the embryo as it grows," said Dr. Milan Bagchi. "Our next priority will be to examine whether Hand2 plays a critical role in the human uterus as well."

The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Test Reliably Detects Inherited Immune Deficiency in Newborns
NIH-supported study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.
Wednesday, August 20, 2014
Drug Combination May be Highly Effective in Recurrent Ovarian Cancer
The drugs were tested in a phase I combination study followed by a randomized phase 2 trial.
Monday, June 02, 2014
TCGA Bladder Cancer Study Reveals Potential Drug Targets, Similarities to Several Cancers
Investigators have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.
Thursday, January 30, 2014
Gene Variants Found Associated With Human Immune System, Autoimmune Disease
Numerous studies have reported that certain diseases are inherited. But genetics also plays a role in immune response, affecting our ability to stave off disease.
Friday, September 27, 2013
NIH Program Explores the Use of Genomic Sequencing in Newborn Healthcare
Can sequencing of newborns’ genomes provide useful medical information beyond what current newborn screening already provides?
Wednesday, September 04, 2013
Investigational Malaria Vaccine Found Safe and Protective
An investigational malaria vaccine has been found to be safe, to generate an immune system response, and to offer protection against malaria infection in healthy adults.
Friday, August 09, 2013
Clues to Congenital Heart Disease
Non-inherited mutations in hundreds of genes together account for about 1 in 10 cases of severe congenital heart defects.
Wednesday, May 22, 2013
New NIH funding for two Autism Centers of Excellence
A total of 11 centers now funded for up to five years.
Wednesday, April 03, 2013
Modelling Dynamics in Protein Crystal Structures by Ensemble Refinement
Detailed information about the dynamic behaviour of proteins is essential for a proper understanding of a variety of processes, including catalysis, ligand binding and protein–protein interactions.
Monday, January 28, 2013
Gene Therapy for Salivary Gland Shows Promise
An experimental trial showed that gene therapy can be performed safely in the human salivary gland.
Tuesday, December 04, 2012
Therapy Repairs Ravaged Immune System
Gene therapy can safely restore immune function in children with severe combined immunodeficiency and allow some to stop taking painful weekly injections.
Tuesday, October 02, 2012
Gene Therapy Restores Sense of Smell in Mice
Mice that were unable to smell from birth gained the ability to smell when researchers used gene therapy to regrow structures called cilia on cells that detect odor.
Tuesday, October 02, 2012
The National Database for Autism Research Announces its First Data Release
Autism Spectrum Disorder researchers now can use data from over 10,000 participants enrolled in ASD studies.
Wednesday, December 01, 2010
Researchers Discover Key Mutation in Acute Myeloid Leukemia
Researchers have discovered mutations in a particular gene that affects the treatment prognosis for some patients with acute myeloid leukemia (AML), an aggressive blood cancer that kills 9,000 Americans annually.
Monday, November 15, 2010
NIH Launches Genotype-Tissue Expression Project
Project to chart influence of DNA changes on gene function in human tissues and organs.
Wednesday, October 13, 2010
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos