Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Mimic Body's Own Healing Potential to Create Personalised Therapies for Inflammation

Published: Wednesday, April 13, 2011
Last Updated: Tuesday, April 12, 2011
Bookmark and Share
Scientists discovered that certain microparticles contained anti-inflammatory lipids, which help terminate inflammation and return the body to its normal balance.

Scientists at Barts and The London School of Medicine and Dentistry and Harvard Medical School, Boston have found a way of mimicking the body's natural mechanism of fighting inflammation. During inflammation cells release very small particles termed 'microparticles' that retain features of their parent cell.

The scientists discovered that certain microparticles were beneficial to health, and that these microparticles contained anti-inflammatory lipids, which help terminate inflammation and return the body to its normal balance.

The discovery, featured online in the current edition of the Journal of Immunology, paves the way for new personalized treatments to target uncontrolled inflammation that need not rely on synthetic biomaterials, therefore reducing potential toxicity.

Inflammation of joints and muscles is implicated in many human diseases including cardiovascular disease, arthritis and temporomandibular disorders and its treatment remains an unmet medical need.

Led by Dr Lucy V Norling (a Foundation Fellow of the Arthritis Research UK), researchers from the William Harvey Research Institute at Barts and The London School of Medicine and Dentistry and Harvard Medical School (laboratory of Professor CN Serhan) investigated the properties of microparticles during inflammatory episodes showing them to contain beneficial lipids (fat molecules) that are precursors for compounds that stimulate the resolution of an inflammatory episode.

The researchers then mimicked this natural communication process to make a new personalized delivery system for anti-inflammatory therapeutics based on natural human microparticles instead of synthetic biomaterials, which bring adverse immunotoxic effects.

The many benefits of these humanized particles, coined 'nano-proresolving medicines' are that they can be loaded with anti-inflammatories (e.g. resolvins or other small molecules) to enhance their protective bioactions.

Dr Norling said: "These results uncover a novel way of targeting anti-inflammatories therapeutics to the site of inflammation using a natural delivery system. I think this new mode of delivery could have application for numerous inflammatory diseases including those of the joint such as arthritis and temporomandibular disorders."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Tuesday, April 26, 2016
Fighting Early Stage Alzheimer's
Mouse study suggests possibility of curbing early synapse loss in Alzheimer’s.
Monday, April 04, 2016
Breaking the Chain
Compound prevents multidrug-resistant fungi from pumping out drugs.
Tuesday, February 23, 2016
Breaking Point
Hotspots for DNA breaks cluster in specific genes in developing neurons.
Wednesday, February 17, 2016
The Spice of Life
Scientists discover important genetic source of human diversity.
Tuesday, February 09, 2016
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Tuesday, February 09, 2016
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Tuesday, February 09, 2016
‘Lifespan Machine’ Probes Cause of Aging
Findings suggest that aging has no single mechanism.
Wednesday, February 03, 2016
Photo Finish
Nanoparticles pair photodynamic and molecular therapies against pancreatic cancer in mice.
Tuesday, January 26, 2016
High-fidelity CRISPR
Improved gene-editing tool has no detectable off-target mutations.
Thursday, January 07, 2016
Stem Cell Memory
Scientists find molecular key that prevents the conversion of adult cells into iPS cells.
Tuesday, January 05, 2016
Hit Parade
Researchers are generating a list of compounds that may lead to a trio of new therapeutics.
Tuesday, December 22, 2015
Stockpiling Proteins
New web-based tool allows researchers to measure protein dynamics in embryogenesis.
Wednesday, December 09, 2015
A Natural History of Neurons
Diverse mutations reveal lineage of brain cells.
Monday, October 05, 2015
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
Monday, September 28, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!