Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

RIKEN: Mechanism for Stress-induced Epigenetic Inheritance Uncovered in New Study

Published: Friday, June 24, 2011
Last Updated: Friday, June 24, 2011
Bookmark and Share
Results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in understanding of non-Mendelian inheritance.

Researchers at RIKEN have uncovered a mechanism by which the effects of stress in the fly species Drosophila are inherited epigenetically over many generations through changes to the structure of chromatin, the material that makes up the cell nucleus.

Published in the journal Cell, the results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in our understanding of non-Mendelian inheritance.

Recent years have seen growing interest in the phenomenon of epigenetic inheritance: the idea that our genome, through epigenetic tags and other structural modifications, transmits more information than the sequence of letters encoded in its DNA base pairs alone.

Stresses of various kinds have been shown to induce such epigenetic change, yet the underlying mechanisms involved remain unknown.

To clarify these mechanisms, the researchers investigated the activity of activation transcription factor-2 (ATF-2), a member of a family of transcription factors which regulate gene expression in response to changes in the cellular environment.

Earlier research had suggested that in the absence of stress, ATF-2 plays a role in silencing certain genes through the formation of heterochromatin, a tightly-packed variety of chromatin whose state is epigenetically heritable. When the stress is turned on, ATF-2 changes its function and induces gene expression.

Studying mutations to the ATF-2 gene in Drosophila (dATF-2), the researchers observed a disruption to the heterochromatin structure and reduced methylation of histone proteins, the main component of chromatin.

Further analysis revealed that heat shock and osmotic stress during early embryogenesis results in phosphorylation of dATF-2 and triggers its release from the heterochromatin.

Most interestingly, the researchers discovered that the disruption to heterochromatin caused by the release of dATF-2 was transmitted to the next generation of cells, without any change to their DNA sequences. In the case of heat shock, sustained stress over multiple generations resulted in the altered chromatin state being inherited by subsequent generations as well.

The findings thus provide the first example of multigenerational transmission of stress-induced epigenetic change, highlighting the role played by ATF-2 and opening promising new avenues for further study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Growing Skin in the Lab
Using reprogrammed iPS cells, scientists have successfully grown complex skin tissue—complete with hair follicles and sebaceous glands—in the laboratory.
Tuesday, April 05, 2016
New ACE-inhibiting Molecule Found in the Asparagus
Scientists have determined that sulfur-containing compounds in plants can inhibit ACE.
Saturday, August 22, 2015
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Thursday, July 30, 2015
Ensuring Food Safety Using Space Technology
New device can detect cesium isotopes in food samples.
Monday, March 09, 2015
Growing Functioning Brain Tissue In 3D
RIKEN researchers have induced human embryonic stem cells to self-organize into a 3D cerebellum like structure.
Monday, February 02, 2015
Insights Into A Rare Genetic Disease
Study shows mutation in NGLY1 gene is linked to a genetic disorder with severe consequences.
Tuesday, January 20, 2015
Predicting Antibiotic Resistance
A common set of features appear to be responsible for the development of resistance to several types of antibiotics.
Friday, December 19, 2014
A Greasy Way to Take Better Protein Snapshots
Researchers used a newly developed grease to suspend small crystals of lysozyme, glucose isomerase, thaumatin, and fatty acid-binding protein type-3.
Wednesday, November 12, 2014
Stress Turns Ordinary Cells Pluripotent
Researchers demonstrate that ordinary somatic cells from newborn mice can be stripped of their differentiation memory, reverting to a state of pluripotency.
Thursday, January 30, 2014
New Fluorescent Protein from Eel Revolutionizes Key Clinical Assay
Unagi, the sea-going Japanese freshwater eel, harbors a fluorescent protein that could serve as the basis for a revolutionary new clinical test.
Friday, June 21, 2013
Gene Identified Responsible for Disorders of Bones and Connective Tissue
Researchers have identified a gene that when mutated is responsible for a spectrum of disorder.
Monday, May 13, 2013
Japanese Team Creates Cancer-Specific Killer T Cells from iPS Cells
Researchers have succeeded for the first time in creating cancer-specific, immune system cells called killer T lymphocytes, from induced pluripotent stem cells (iPS cells).
Wednesday, January 09, 2013
New Metal Hydride Clusters Provide Insights into Hydrogen Storage
The study sheds light on a class of heterometallic molecular structures whose unique features point the way to breakthroughs in the development of lightweight fuel cell technology.
Thursday, September 22, 2011
RIKEN: Genome-wide Study Reveals 3 New Susceptibility Loci for Adult Asthma in Japanese Population
The findings appear in Nature Genetics and derive from a genome-wide study of 4836 Japanese individuals.
Monday, August 01, 2011
Overlooked Peptide Reveals Clues to Causes of Alzheimer's Disease
Highly aggregative and neurotoxic amyloid peptide A-ß-43 points the way to new approaches for AD diagnosis and treatment.
Monday, July 04, 2011
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!