Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Scientists Develop Artificial Biominerals

Published: Thursday, September 08, 2011
Last Updated: Thursday, September 08, 2011
Bookmark and Share
Scientists have created synthetic crystals whose structures and properties mimic of naturally occurring biominerals.

Scientists have successfully created synthetic crystals whose structures and properties mimic those of naturally occurring biominerals such as seashells.

The findings, published in the journal Nature Materials, could be an important step in the development of high-performance materials, which could be manufactured under environmentally-friendly conditions.

Biological minerals or ‘biominerals’ occur widely throughout nature in structures such as bones, teeth and seashells and frequently show remarkable shapes and properties compared with their synthetic counterparts.

A key feature of biominerals is that they are composite materials, made from an inorganic mineral such as calcium carbonate which contains a small amount of organic material, usually a protein.

The resulting structures are incredibly hard and their mechanical properties can rival those of man-made materials such as ceramics, which are typically manufactured under high temperatures and pressures, giving less opportunity for control over the material properties.

Scientists are interested in understanding how biology is able to perform such precision engineering in water at ambient temperatures so they can apply this principle to the design and production of synthetic materials that are much greener than existing ones.

Now a team led by Professor Fiona Meldrum, from the University of Leeds School of Chemistry, has succeeded in creating artificial biominerals that exhibit similar properties to biominerals such as sea urchin spines.

They did this by growing calcite crystals in the presence of synthetic polymer nanoparticles which act as artificial proteins. These nanoparticles are incorporated into the architecture of the crystal as it grows to create a composite material.

The researchers also tested the mechanical properties of the composite material using a nanoindenter, a small chisel-like tool that can prod a material and record its response to a force.

Professor Meldrum said: “This method of creating synthetic biominerals gives us a unique insight into the structure of these incredible materials and the way the organic molecules are incorporated into the crystal structure at a microscopic level. We can then relate this microscopic structure to the mechanical properties of the material.

“What we found is that the artificial biomineral we have created is actually much harder than the pure calcite mineral because it is a composite material - where you add something soft to a hard substance to create something even harder than either of the constituent parts.”

Co-author Professor Stephen Eichhorn, who has just moved to the University of Exeter from the University of Manchester, said: "Biological examples of calcium carbonate-based structures have a higher hardness than pure mineral without proteins present. It is remarkable that we have been able to achieve the same result using a synthetic 'pseudo' protein."

"When I began researching the mechanical properties of seashells at Manchester my first PhD student and I literally collected them with a bucket and spade on the beach. I didn't imagine that we would get to the stage of being able to measure similar properties for materials made in the lab."

The researchers will now try to replicate their technique using different minerals. The research was a collaboration between the Universities of Leeds, Sheffield, Manchester and York, and the Israel Institute of Technology. It was funded by the Engineering and Physical Sciences Research Council.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Brazilian Wasp Venom Kills Cancer Cells
The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient.
Tuesday, September 15, 2015
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Tuesday, July 28, 2015
New Insights into “Antenna” of Human Cells
Scientists from the University of Leeds have uncovered the most comprehensive list yet of genes implicated in a group of common inherited diseases.
Wednesday, July 15, 2015
Protein Responsible for Blood Vessel Growth in Tumours Discovered
Scientists have discovered a new protein which triggers the growth of blood vessels in breast cancer tumours which have spread to the brain, a common location which breast cancer can spread to.
Wednesday, July 01, 2015
Gold Nanotubes Launch A Three-Pronged Attack On Cancer Cells
Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging; drug delivery vehicles; and agents for destroying cancer cells.
Monday, February 16, 2015
Stroke Damage Mechanism Identified
Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.
Monday, December 01, 2014
Breakthrough Allows Researchers to Watch Molecules “Wiggle”
A new crystallographic technique developed at the University of Leeds is set to transform scientists’ ability to observe how molecules work.
Tuesday, October 07, 2014
New Chemistry Chair for Institute of Process Research and Development Monday 11 July 2011
Professor Frans L Muller has been appointed as Chair in Chemical Process Engineering at the University of Leeds.
Wednesday, July 13, 2011
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos