Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Confusion as FDA Classify Genome Interpretation as Medical Test

Published: Monday, November 28, 2011
Last Updated: Monday, November 28, 2011
Bookmark and Share
FDA conclude deciphering your genome should therefore be subject to approval by the appropriate regulatory bodies

Right now, for about the same price as a conventional medical test that reveals just a handful of genes, you could learn the entire contents of your genome. Sure, it’s a "research" scan, which means it will contain mistakes, and your insurance won’t cover the $4,000-$5,000 bill. But it won't be more than a few years before a complete and virtually error-free version of your genome will be within financial reach. Wouldn’t you like to unlock your complete instruction set, with all the medical and ancestry data it contains?

Enticing as that may be, it won’t be easy to get those keys if the FDA has its way. Last summer, the agency indicated that it wants to classify the work of any company that helps you decipher your genome as a medical test that must be regulated accordingly. But over the last year, the agency’s lack of continued communication has left companies that would interpret genetic information—which are simply offering information—confused as to where they stand. This lack of clarity and direction could ultimately mean ceding leadership in this field to overseas competitors who are not similarly constrained.

The FDA has indicated through its public statements that it will put regulatory barriers in the path of companies that want to help us interpret genomes. In June 2010 the agency sent a series of letters to providers like 23andMe, warning them that they were selling what amounted to medical tests that were not vetted by the FDA, and so were in violation of the law. The FDA’s letter to consumer genetics testing company 23andMe is a good example of the tack the agency is now taking. “23andMe has never submitted information on the analytical or clinical validity of its tests to FDA for clearance or approval. ... Consumers may make medical decisions in reliance on this [genetic] information [provided by 23andMe].”

Since then, the FDA has continued to send out letters of a similar tone—23 in total, all to different companies—but has offered no other guidance to providers of direct-to-consumer genetic tests, leaving these companies, and their investors, in the dark about the ultimate direction of regulation in this area. Frustrated by the delay, in recent months many of these companies have made their responses to the FDA public on their websites, in part to protest the climate of ongoing regulatory uncertainty that the agency’s actions have created. Others have pre-emptively eliminated medically significant interpretations from their tests, even if the genes they return still contain that information.

Rather than protect consumers, the FDA’s move has left the genetic information industry in limbo—and it seems a matter of time before it moves overseas. Can’t get your full genome scan interpreted by software hosted on servers in the United States, owned by a U.S. company? Within a decade, a company in a country not subject to our laws will almost certainly be happy to accommodate you. That’s if you don’t take the do-it-yourself route first, plumbing your genome with free and open-source software linked to Wikipedia-style databases maintained by volunteers (which, because they aren’t sold, aren’t subject to FDA regulation).

It’s difficult, if not impossible, to find legal or medical scholars in the United States who are against patient access to full genome sequences. So where does the FDA’s reticence come from? In part, it’s the long shadow of “genetic exceptionalism”—the idea that “genetic information is inherently unique and should be treated differently in law than other forms of personal or medical information,” as Alan Dow, vice president and legal counsel at Complete Genomics, put it.

Other Western governments, too, have fallen into the genetic exceptionalism trap. In 1997, the European Union’s member states even signed a treaty, the Convention on Human Rights and Biomedicine, which mandates that all signatories apply the precautionary principle when handling biomedical advances like genetic sequencing. This means it’s incumbent upon the advocates of these technologies to prove they won’t do any harm. So, for example, Germany has instituted a law so broad that it basically prevents anyone from getting her own genes sequenced without a doctor’s permission. If the genome-interpreting industry is forced by regulatory limbo to seek shelter outside the United States, we may see developing countries like India compete to fill the market gap.

Based on how we've (mis)used other medical technologies, it’s understandable that governmental bodies are at least a little concerned about the advent of whole-genome sequencing. For example, full-body MRI scans have fed into hypochondria-type fears by flagging benign abnormalities that then have to be further examined. Wouldn't a full-genome scan, with the many disease-contributing genes it turns up, do the same? And won't patients who discover, for example, an elevated chance of an incurable disease have their quality of life adversely affected? We'll get to the details later, but the short answer is no.

Genetic data have to be interpreted in a way that the public might not be accustomed to. But it is elitism of the highest order to imagine that most of us are simpletons who can’t grasp the concept that a gene might contribute to a disease condition, but in no way guarantees it. The fear is that every new study associating a gene with a particular disorder will send patients running to their doctors to ask whether they should be worried. But that seems to be a short-term concern: Most patients will understand the reality after their first (or maybe second) panicked trip to the doctor. The physician will tell them that these studies are always preliminary and that even if they’re borne out by subsequent research, the vast majority of these genes have only a marginal effect on our health.

Studies suggest that even patients who find out they have an elevated risk for a disease with a strong genetic component but no cure—like Alzheimer’s—handle the news quite well. In light of this, it seems like the worst-case scenario for a full genome scan is that a patient might be inspired to actually talk to their doctor about their health. If having genes that suggest an elevated chance of heart disease inspire someone to at least be conscientious about their other risk factors for the disease, great! Preliminary research suggests that results of genetic tests change consumers’ intention to do something about their health, if not their actual behavior. (Consumers’ options about what to do with this information often comes down to common lifestyle changes like diet and exercise, which are difficult to get patients to implement under any circumstances).

The only thing worse than the paternalism keeping genetic data and its implications from consumers is the failure of imagination this represents, in terms of the potential upside of the coming genomic revolution. The more full-genome scans we have, and the cheaper they become, the more useful information patients will have. Widespread genotyping will help us understand our own ancestry, but perhaps more importantly will lead to a new kind of engagement with our health and biology. For this new technology to transform American health—and to cultivate a new, high-tech, high-promise industry within the United States—the FDA needs to provide clarity and guidance. The alternative is that the FDA becomes something like the recording industry at the dawn of the MP3 age: a body trying to lock down immaterial assets that consumers are going to get their hands on, one way or another.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

FDA OK’s AquAdvantage Salmon
After an exhaustive and rigorous scientific review, FDA has arrived at the decision that AquAdvantage salmon is as safe to eat as any non-genetically engineered (GE) Atlantic salmon, and also as nutritious.
Monday, November 23, 2015
Advancing Precision Medicine by Enabling a Collaborative Informatics Community
The FDA is developing an informatics platform that will facilitate the sharing of expertise of knowledge in the field of precision medicine.
Wednesday, August 12, 2015
FDA Declares Trans Fatty Acids Unsafe for Consumption
TFAs are widely recognized as the most harmful fat with regard to causing cardiovascular disease (CVD).
Wednesday, July 15, 2015
FDA Seeks $4.9 billion to Implement the FDA Food Safety Modernization Act
FY 2016 request reflects a nine percent increase from FY 2015 budget, aims to improve the quality and safety of the medical products Americans use.
Monday, February 23, 2015
FDA Issues Additional Guidance For Outsourcing Facilities That Compound Sterile Human Drugs
Agency outlines details on registration, fees, and drug product reporting for outsourcing facilities.
Tuesday, November 25, 2014
FDA Rules Will See Calorie Counts on Menus
The menu labeling final rule applies to restaurants and similar retail food establishments if they are part of a chain of 20 or more locations.
Tuesday, November 25, 2014
FDA Food Safety Challenge
Challenge aims to spur new technologies for fighting foodborne illness.
Friday, September 26, 2014
FDA Allows Marketing of T2Candida
FDA allows marketing of the first test to identify five yeast pathogens directly from a blood sample.
Tuesday, September 23, 2014
FDA Issues Guidance on Use of Nanotechnology in Food Production
The three final guidances and one draft guidance provide greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products.
Tuesday, July 01, 2014
FDA Proposes New Expedited Access Program for Medical Devices
New program would provide earlier access to high-risk medical devices that address unmet needs in the treatment or diagnosis of patients with serious conditions.
Tuesday, April 22, 2014
FDA, EMA Strengthen Pharmacovigilance Collaboration
The U.S. Food and Drug Administration and the European Medicines Agency (EMA) have set-up a new 'cluster' on pharmacovigilance topics.
Thursday, February 20, 2014
FDA Approves First Generic Versions of Antidepressant Drug Cymbalta
The U.S.FDA approved the first generic versions of Cymbalta), a prescription medicine used to treat depression and other conditions.
Monday, December 16, 2013
FDA Approves First Adjuvanted Vaccine for Prevention of H5N1 Avian Influenza
Vaccine to supplement National Stockpile, not intended for commercial availability.
Wednesday, November 27, 2013
FDA Takes Step to Help Ensure the Safety of Imported Food
Agency releases new proposed rules under FSMA for verifying foreign suppliers and accrediting third-party auditors.
Monday, July 29, 2013
FDA Approves Simponi to Treat Ulcerative Colitis
The U.S. FDA approved a new use for Simponi (golimumab) injection to treat adults with moderate to severe ulcerative colitis.
Monday, May 20, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos