Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

SRI Speeds Development of Genome-Scale Models of Metabolic Networks

Published: Wednesday, January 25, 2012
Last Updated: Wednesday, January 25, 2012
Bookmark and Share
The new MetaFlux functionality can be used to design drugs against disease-causing bacteria and metabolically engineer bacteria to make chemicals and fuels.

MetaFlux is a new software tool to substantially decrease the time required for researchers to construct genome-scale models of metabolic networks.

Metabolic networks are the complete set of metabolic and physical processes that determine the physiological and biochemical properties of a cell. Genome-scale models are used to predict cell growth rate, combinations of chemicals that can support cell growth, and which genes will cause cell death if they are inactivated.

It may also yield insights about growth of bacteria that cannot currently be grown in a laboratory.
MetaFlux software couples flux balance analysis (FBA), a mathematical method to analyze metabolism, with pathway databases that contain information about the network of interactions between proteins and small molecules that forms the biochemical factory of a cell.

"Genome-scale models are very time consuming to construct, because they require an exact description of the hundreds of biochemical reactions within a cell—and a single missing reaction can render a model nonfunctional," said Peter D. Karp, Ph.D., director, Bioinformatics Research Group, SRI International. "Our goals were to speed up the development of these models and allow a wider community of scientists to build them. SRI's Bioinformatics Research group has already developed two different FBA models using MetaFlux, each within one month of effort."

Based on mixed integer linear programming, MetaFlux uses a multiple gap-filling method to accelerate the development of FBA models. This method generates the models directly from pathway/genome databases, which can be constructed, queried, and visualized using SRI's Pathway Tools software. MetaFlux can also suggest additional reactions, nutrients, and secreted metabolites to complete a model.

During model development, MetaFlux will identify the subset of biomass metabolites (end products of biosynthesis) that cannot currently be produced. The software also paints reaction flux rates onto an automatically generated organism-specific metabolic map diagram, much like an online road map shows traffic flow rates.

MetaFlux is part of Pathway Tools, available freely to academic users and for a fee to commercial users. An article describing MetaFlux is in the online edition of the journal Bioinformatics at http://oxford.ly/metaflux, and will appear in the journal's 3rd issue of 2012, which publishes in early February.

The project described was supported by award number R01GM080746 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

SRI Awarded NIAID Contract to Study New HIV and AIDS Therapies
The $49M, seven-year contract with the National Institute of Allergy and Infectious Diseases will see SRI conduct preclinical development of potential therapies for HIV infection and AIDS.
Friday, August 01, 2014
SRI Establishes Metabolite Standards Synthesis Center for NHLBI
Company receives $4.5 million contract from the NHLBI to establish a Metabolite Standards Synthesis Center to prepare molecules for researchers to use in the field of metabolomics.
Tuesday, January 07, 2014
DOE Funds SRI to Enhance Bioinformatics Tools for Renewable Energy Research
Department of Energy-funded project will develop enhanced tools to accelerate bioenergy research.
Sunday, January 30, 2011
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!