Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

J. Craig Venter, Ph.D., Describes Biofuels, Vaccines and Foods from Made-to-Order Microbes

Published: Monday, March 26, 2012
Last Updated: Monday, March 26, 2012
Bookmark and Share
Scientists are using decades of knowledge garnered from sequencing or “reading” the genetic codes of thousands of living things to now start writing new volumes in the library of life.

J. Craig Venter, Ph.D., one of the most renowned of those scientists, described the construction of the first synthetic cell and many new applications of this work today at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, which is underway this week.

In a plenary talk titled, “From Reading to Writing the Genetic Code,” Venter described a fundamental shift in his field of genomics, and its promise for producing synthetic life that could help provide 21st century society with new fuels, medicines, food and nutritional products, supplies of clean water and other resources. Venter, a pioneer in the field, led the team at Celera Genomics that went head-to-head with the government-and-foundation-funded Human Genome Project in the race to decode the human genome. This quest, in which the 23,000 human genes were deciphered, ended with the teams declaring a tie and publishing simultaneous publications in 2001.

“Genomics is a rapidly evolving field and my teams have been leading the way from reading the genetic code — deciphering the sequences of genes in microbes, humans, plants and other organisms — to writing code and constructing synthetic cells for a variety of uses. We can now construct fully synthetic bacterial cells that have the potential to more efficiently and economically produce vaccines, pharmaceuticals, biofuels, food and other products.”

The work Venter described at the ACS session falls within an ambitious new field known as synthetic biology, which draws heavily on chemistry, metabolic engineering, genomics and other traditional scientific disciplines. Synthetic biology emerged from genetic engineering, the now-routine practice of inserting one or two new genes into a crop plant or bacterium. The genes can make tomatoes, for instance, ripen without softening or goad bacteria to produce human insulin for treating diabetes. Synthetic biology, however, involves rearranging genes on a much broader scale — that of a genome, which is an organism’s entire genetic code — to reprogram entire organisms and even design new organisms.

Venter and his team at the not-for-profit J. Craig Venter Institute (JCVI), which has facilities in Rockville, Maryland, and San Diego, announced in 2010 that they had constructed the world’s first completely synthetic bacterial cell. Using computer-designed genes made on synthesizer machines from four bottles of chemicals, the scientists arranged those genes into a package, a synthetic chromosome. When inserted into a bacterial cell, the chromosome booted up the cell and was capable of dividing and reproducing.

In the ACS talk, Venter described progress on major projects, including developing new synthetic cells and engineering genomes to produce biofuels, vaccines, clean water, food and other products. That work is ongoing at both JCVI and at his company, Synthetic Genomics Inc. (SGI). A project at SGI for instance, aims to engineer algae cells to capture carbon dioxide and use it as a raw material for producing new fuels. Another group uses synthetic genomic advances with the goal of making influenza vaccines in hours rather than months to better respond to sudden mutations in those viruses.

Venter also described his work in sequencing the first draft human genome in 2001 while he and his team were at Celera Genomics, as well as the work on his complete diploid genome published in 2007 by scientists at JCVI, along with collaborators at The Hospital for Sick Children in Toronto and the University of California, San Diego. In addition to continued analysis of Venter’s genome, he and his team are also studying the human microbiome, the billions of bacteria that live in and on people, and how these microbes impact health and disease.

While technology is rapidly changing, making human genome sequencing more and more accessible, the accuracy of these next generation machines remain a challenge. Thus, Venter believes it may be years before such full-genome sequences become accurate enough to find a place in routine medical care.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Mycotoxins in Beer
Scientists develop portable mycotoxin sensor to minimise risk of contamination.
Tuesday, November 08, 2016
Spotting Falsified, Degraded Medications
A team of researchers has developed a simple, inexpensive paper-based device to screen suspicious medications.
Monday, August 22, 2016
Frankfurter Fraud: Finding Out What’s In Your Hot Dog
Scientists have developed a technique to test the meat content of Frankfurters.
Friday, August 12, 2016
Portable Test Rapidly Detects Zika
To better diagnose and track the disease, scientists are now reporting a new $2 test that in the lab can accurately detect low levels of the virus in saliva.
Friday, July 01, 2016
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
Friday, May 20, 2016
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Friday, May 06, 2016
Vinegar Could Potentially Help Treat Ulcerative Colitis
Vinegar is the perfect ingredient for making tangy sauces and dressings. Now, researchers report that the popular liquid could also help fight ulcerative colitis, an inflammatory bowel disease that research suggests is related to the gut microbiome.
Monday, February 15, 2016
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Thursday, October 01, 2015
New, Improved Approach To Mammograms
Detecting breast cancer in women with dense mammary tissues could become more reliable with a new mammogram procedure that researchers have now tested in pre-clinical studies of mice.
Friday, September 18, 2015
“Heat” From Chilli Peppers Could Help Kill Cancer Cells
Capsaicin, the compound responsible for chilis’ heat, is used in creams sold to relieve pain, and recent research shows that in high doses, it kills prostate cancer cells.
Friday, September 11, 2015
Preventing Drinking Water Contamination by Pharmaceuticals
In recent years, researchers have realized that many products, including pharmaceuticals, have ended up where they’re not supposed to be — in our drinking water.
Friday, September 11, 2015
Cheap Diagnostics with a Portable "Paper Machine"
Scientists have developed a cheap, portable system for point of care diagnostics for a range of infectious diseases, genetic conditions and cancer.
Monday, July 20, 2015
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Monday, July 06, 2015
Artificial Pancreas Controls Diabetes
Scientists are reporting the development of an implantable “artificial pancreas” that continuously measures a person’s blood sugar, or glucose, level and can automatically release insulin as needed.
Friday, July 03, 2015
Expanding the Code of Life With New “Letters”
Researchers have developed a new nucleotide pair that can be added to DNA, raising the possibility that entirely new proteins could be created for medical uses.
Friday, May 29, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!