Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Analysis of Stickleback Genome Sequence Catches Evolution in Action

Published: Thursday, April 05, 2012
Last Updated: Thursday, April 05, 2012
Bookmark and Share
Reuse of key genes is a common theme, as reported by scientists at the Howard Hughes Medical Institute.

Three-spine sticklebacks aren’t as pretty as many aquarium fish, and anglers don’t fantasize about hooking one. But biologists treasure these small fish for what they are revealing about the genetic changes that drive evolution. Now, researchers have sequenced the stickleback genome for the first time, and they have discovered that as fish in different parts of the world adapted to live in fresh water, the same sites in the genome were changed time and again.

Their findings, published April 5, 2012, in the journal Nature, indicate that changes to both genes and, more commonly, stretches of DNA that control gene activity, have driven sticklebacks’ adaptation to fresh water environments.

“The cool thing about these fish is that they’ve colonized a whole series of new environments in the last 10,000 to 20,000 years,” says Howard Hughes Medical Institute (HHMI) investigator David Kingsley of Stanford University School of Medicine. As the glaciers melted at the end of the last ice age, marine sticklebacks ventured into fresh water, settling in rivers, lakes, and streams. The fish adapted to their new homes. Compared with their marine relatives, freshwater sticklebacks tend to be smaller and sleeker, with less bony body armor. The challenges of surviving in new habitats also prompted modifications to their teeth, jaws, kidneys, coloration, and numerous other traits. Moreover, this pattern of colonization and adaptation has repeated itself in several areas where sticklebacks live, including the east and west coasts of North America, western Europe, and eastern Asia. “A world-wide collection of lakes and streams became countless natural evolutionary experiments,” says Kingsley.

These evolutionary experiments afford researchers the opportunity to uncover the genetic changes responsible for particular adaptations. In previous studies, Kingsley and colleagues have teased out three examples. In 2005, for instance, the researchers reported in Science that freshwater sticklebacks typically carry certain versions of the gene Ectodysplasin, which helps set the number of bony plates along a fish’s side. Rare in marine sticklebacks, the reduced armor variants presumably became prevalent in most streams and lakes because less body armor was advantageous in fresh water, where speed was a better defense against local predators. However, Kingsley notes, this kind of detective work, which focuses on a particular morphological trait, relies on laborious techniques to map and pinpoint evolving genes, and took about five years to complete. In addition, he says, individual case studies can’t provide a general picture of the types of DNA changes most often used when fish adapt to new surroundings. To get that overview, the researchers needed the complete stickleback genome sequence.

For their latest study, Kingsley, scientists from the Broad Institute of MIT and Harvard, and an international team of collaborators started by sequencing the genome of an Alaskan freshwater stickleback to serve as a standard for comparison. That was an achievement in itself, yielding the first complete stickleback genome sequence.Next, the team followed suit with the genomes of twenty additional sticklebacks from around the world, including ten ocean stickleback varieties found around North America, Europe, and Japan, as well as the genomes of ten freshwater relatives from nearby freshwater locations. They then analyzed the sequences to identify DNA regions that changed whenever the fish made the move from salt water to fresh.

The researchers found 147 “reused” regions in the fish’s genome. That suggests that each time the fish left the sea, variants in this same group of genes helped remodel the fish into forms that were better suited to fresh water, Kingsley says.

So what are these genes? The reused regions include the key armor genes that Kingsley and colleagues previously identified, and many others involved in metabolism, developmental signaling, and behavioral interactions between animals. The study highlights some genes in which alterations likely aid fish adapting to life in a less salty environment. These genes, which are in the WNT family that helps orchestrates embryonic development, adjust the size of small tubes in the kidney that are involved in conserving salt. Freshwater fishes tend to lose salt to their environment, so they need longer tubes to recapture it from the fluid filtered by the kidneys instead of excreting it in their urine.

The stickleback sequences also allowed the researchers to tackle one of the most contentious issues in evolutionary biology. Researchers have battled over what type of genetic changes spur evolution. Some scientists argue for changes to the coding sections of the genome, the portions that cells read to make proteins. More influential, other researchers contend, are alterations to regulatory DNA, which controls the activity of genes. “Here, it isn’t either-or,” says Kingsley. The team’s analysis suggests that both kinds of changes occurred during stickleback evolution, but regulatory changes were about four times as common. “We finally get an idea of the relative contributions of both mechanisms, to a whole range of traits that have evolved in the wild,” says Kingsley.

Using genome sequences to analyze the sticklebacks’ natural evolutionary experiments “is showing us the genetic mechanism through which animals adapt to different environments,” says Kingsley. With this approach, “we can find the key genes that control evolutionary change, helping to bridge the gap between alterations in DNA base pairs and the appearance of new traits in natural populations.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

One-Drop-of-Blood Reveals a Patient’s Viral History
New technology developed by Howard Hughes Medical Institute researchers makes it possible to test for current and past infections with any known human virus by analyzing a single drop of a person's blood.
Tuesday, June 09, 2015
A Crisper View of DNA-Snipping Enzyme
HHMI scientists have created a portrait of a DNA-snipping protein called Cas9, a powerful research tool used in many labs for genome editing.
Saturday, February 08, 2014
Spontaneous Mutations Play a Key Role in Congenital Heart Disease
New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.
Monday, May 13, 2013
A New View of Transcription Initiation
Reading the human genome.
Monday, March 04, 2013
Stash of Stem Cells Found in a Human Parasite
New findings were published online on February 20, 2013, in the journal Nature.
Tuesday, February 26, 2013
Search for Epigenetic Decoder in Brain Cells Leads Scientists to Rett Syndrome
New analysis suggests that MeCP2 recognizes 5hmC in the brain and facilitates activation of the genes.
Monday, December 31, 2012
Scientists Find Mechanism that Triggers Immune Responses to DNA
HHMI scientists have discovered the molecular pathway outside a cell’s nucleus in the cytosol.
Monday, December 24, 2012
Erin O’Shea Named Vice President and Chief Scientific Officer at HHMI
O’Shea to begin her new duties part-time in January 2013 and transition to full-time in July 2013.
Monday, December 03, 2012
Susan Desmond-Hellmann Elected as HHMI Trustee
Desmond-Hellmann becomes one of 11 Trustees of the Institute.
Thursday, November 08, 2012
HHMI’s Robert Lefkowitz Awarded 2012 Nobel Prize in Chemistry
Robert Lefkowitz and Brian K. Kobilka are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.
Thursday, October 11, 2012
Autism Gene Screen Highlights Protein Network for Howard Hughes Medical Institute Scientists
Over the past decade, scientists have added many gene mutations to the list of potential risk factors for autism spectrum disorders -- but researchers still lack a definitive explanation of autism’s cause.
Thursday, April 05, 2012
Scientists Trace Origin of Recent Cholera Epidemic in Haiti
The finding supports the notion that the cholera bacteria fueling the outbreak arrived on the island via recent visitors.
Friday, December 10, 2010
Protein-Folding Game Taps Power of Worldwide Audience to Solve Difficult Puzzles
Extended efforts could pay off in the design of new proteins that help fight disease, sequester carbon, or clean up the environment.
Monday, August 09, 2010
New Tool Illuminates Connections Between Stem Cells and Cancer
HHMI researchers have a new tool to understand how cancers grow - and with it a new opportunity to identify novel cancer drugs.
Monday, February 22, 2010
Crash-Test Reveals DNA Traffic Control
Researchers have discovered that when DNA-copying enzymes run head-on into oncoming traffic, they kick the obstacles out of their way.
Friday, January 29, 2010
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!