Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

IBN's 'Fish and Chips' May Help Accelerate Drug Discovery

Published: Monday, April 09, 2012
Last Updated: Monday, April 09, 2012
Bookmark and Share
IBN scientists develop cheaper, faster and more efficient platform for preclinical drug discovery applications.

A cheaper, faster and more efficient platform for preclinical drug discovery applications has been invented by scientists at the Institute of Bioengineering and Nanotechnology (IBN), the world's first bioengineering and nanotechnology research institute.

Called 'Fish and Chips', the novel multi-channel microfluidic perfusion platform can grow and monitor the development of various tissues and organs inside zebrafish embryos for drug toxicity testing.

This research, published recently in Lab on a Chip, has been selected for feature on the journal's back cover (see Image 1 at

Zebrafish, and especially their embryos, are an important model for studying diseases and drug screening. The morphological and molecular basis of tissue and organ development in zebrafish embryos resembles that of humans, and the overall drug toxicity is also comparable with that observed in animals.

In contrast to animal models, zebrafish are inexpensive, easily obtainable in large quantity, readily accessible immediately after fertilization, require a shorter development time, and are cheaper to maintain.

Current drug studies on zebrafish embryos are performed on traditional microtiter plates, which do not allow perfusion or the replenishment of growth media and drugs, and cannot facilitate live imaging since the embryos are not fixed in one position due to the size of the well.

The conventional way of visualizing tissues and organs in embryos is a laborious process, which includes first mounting the embryos in a viscous medium such as gel, and then manually orienting the embryos using fine needles.

The embryos also need to be anesthetized to restrict their motion and a drop of saline needs to be continuously applied to prevent the embryos from drying. These additional precautions could further complicate the drug testing results.

The IBN 'Fish and Chips' has been designed for dynamic long-term culturing and live imaging of the zebrafish embryos. The microfluidic platform comprises three parts: 1) a row of eight fish tanks, in which the embryos are placed and covered with an oxygen permeable membrane, 2) a fluidic concentration gradient generator to dispense the growth medium and drugs, and 3) eight output channels for the removal of the waste products (see Image 2 at

The novelty of the 'Fish and Chips' lies in its unique diagonal flow architecture, which allows the embryos to be continually submerged in a uniform and consistent flow of growth medium and drugs (see Image 3 at, and the attached gradient generator, which can dispense different concentrations of drugs to eight different embryos at the same time for dose-dependent drug studies.

Other key design elements include customizing the dimensions of the fish tank, which is over 200 times smaller than the individual well of a microtiter plate, to fit the embryos exactly in the tank and restrict its movement for live imaging.

This is crucial to monitor the growth and development of the various tissues and organs in the embryos.

The microfluidic structure was also fabricated using silicon and glass, which provide greater accuracy and reproducibility for commercial application, in comparison with polydimethylsiloxane (PDMS) polymeric-based chips.

Using high-resolution bright-field and fluorescence imaging, the researchers were able to observe the development of various organs such as the eyes, ears, melanophores, brain, yolk sac, trunk and chorion, as well as heartbeats in the zebrafish embryos.

The researchers also conducted drug toxicity testing on the 'Fish and Chips' with valproic acid (VPA), a drug which causes birth defects if consumed by women during their pregnancy.

VPA caused abnormality in the development of the eyes and tail in the embryos. The findings clearly established the proof-of-concept that IBN's 'Fish and Chips' could be used as an organ-level drug screening model.

Professor Hanry Yu, IBN Group Leader, who led the research efforts at IBN, said, "Toxicity is a major cause of drug failures in clinical trials and our novel 'Fish and Chips' device can be used as the first step in drug screening during the preclinical phase to complement existing animal models and improve toxicity testing. The design of our platform can also be modified to accommodate more zebrafish embryos, as well as the embryos of other animal models. Our next step will involve investigating cardiotoxicity and hepatoxicity on the chip."

"Miniaturization is being explored in various ways by our researchers to revolutionize drug development and disease diagnosis. This latest microfluidic platform developed by IBN enables researchers to cut down the time and cost of drug testing significantly. Our technology is available for licensing to companies, and we are also open to collaboration to develop customized assays for drug testing," added Professor Jackie. Y. Ying, IBN Executive Director.

This multi-channel microfluidic perfusion platform was developed in collaboration with Dr Danny van Noort of the MechanoBiology Institute, Singapore, who provided guidance on chip design and Associate Professor Vladimir Korzh's group at the Institute of Molecular and Cell Biology, who provided the transgenic zebrafish lines and fish culture expertise.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

IBN Creates Unlimited Source of Human Kidney Cells
Applications include in vitro toxicology, disease models & regenerative medicine.
Monday, June 03, 2013
IBN Develops Superior Fuel Cell Material
This technology can be used to power airplanes, vehicles and electronic devices.
Monday, August 27, 2012
Scientific News
13 Ways to Stop an Unseen Force from Disrupting Weighing
Download a free Mettler Toledo paper to discover how to halt static’s negative effects before the next weigh-in.
Flinders Ig Nobel Winner Cracks Global Anaesthetic
One of the world’s most in-demand anaesthetics can now be produced on the spot, thanks to the thermos-flask sized device that recently won Flinders University inventor Professor Colin Raston an Ig Nobel prize.
Resurrected Proteins Double Their Natural Activity
Researchers demonstrate method for reviving denatured proteins.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Scientists Decode Structure at Root of Muscular Disease
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
New Test Detects All Viruses
A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.
Inroads Against Leukemia
Potential for halting disease in molecule isolated from sea sponges.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos