Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Smooth Muscle Cells Created from Patients’ Skin Cells

Published: Tuesday, April 10, 2012
Last Updated: Tuesday, April 10, 2012
Bookmark and Share
By using hPSCs scientists discover a method for creating high purity vascular smooth muscle.

Cambridge scientists have for the first time created different types of vascular smooth muscle cells (SMCs) - the cells which make up the walls of blood vessels - using cells from patients’ skin.

Their research, which was partly funded by the Wellcome Trust, is published in the journal Nature Biotechnology.

In the UK, one in three of all deaths is due to cardiovascular disease. The vast majority of these are caused by atherosclerosis, a ‘furring up’ and blockage of blood vessels.

For patients who are unsuitable for conventional stenting or bypass treatment, one option in the future may be to grow new blood vessels to bypass their own blocked vessels.

Lead author of the research, Dr Sanjay Sinha, Wellcome Trust Intermediate Clinical Fellow at the University of Cambridge said: “This research represents an important step in being able to generate the right kind of smooth muscle cells to help construct these new blood vessels. Other patients who may benefit from new blood vessels include those with renal failure, who need vascular grafts for dialysis.”

For the research, the scientists used embryonic stem cells (or similar cells derived from a patient’s skin sample), which have the potential to form any cell type in the body, known as human pluripotent stem cells (hPSCs).

Using hPSCs, they discovered a method for creating high purity vascular smooth muscle. Although blood and cardiac cells from hPSCs have been created before, this is the first time that all the major types of vascular smooth muscle cells have been developed and done so in a system which would be easy to scale up for clinical-grade production.

Vascular smooth muscle cells originate from different tissues in the early embryo, and the scientists were able to reproduce three distinct types of embryonic tissue in the culture dish.

Interestingly, these SMCs responded differently to vascular disease causing substances, such as growth factors, depending on which embryonic pathway they had come from.

They conclude that differences in embryonic origin may play a part in determining where and when common vascular diseases such as aortic aneurysms or atherosclerosis develop.

Dr Sinha added: “Using this system, we can begin to understand how SMC origin affects development of vascular disease and why some parts of the vasculature are protected from disease.

“Additionally, there are many patients who have a genetic disorder, such as Marfans Syndrome, that affects their vascular smooth muscle cells and leads to premature death and disability. With this research, and using hPSCs generated from patient skin samples, we will be able to generate smooth muscle cells with the genetic abnormality in a culture dish. This type of ‘disease in a dish’ modelling will allow us to understand the disease better and will allow us to screen for new treatments.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Renewable Killer Cells Could Be Key to Cancer Immunotherapy
Molecule that can turn ‘killer T-cells’ into long-lived, renewable cells that could help make cell-based immunotherapy a realistic prospect to treat cancer.
Tuesday, November 01, 2016
Anti-Inflammatory Drugs Could Help Treat Depression
Anti-inflammatory drugs could be used to treat some cases of depression, which further implicates our immune system in mental health disorders.
Thursday, October 20, 2016
Quadruple Helix DNA Aids Cancer Therapies
Researchers have identified the role that a four-stranded version of DNA may play in the role of cancer progression.
Wednesday, September 21, 2016
Gene Signature in Healthy Brains Pinpoints
Researchers have identified a specific signature of a group of genes in the regions of the brain which are most vulnerable to Alzheimer’s disease.
Saturday, August 13, 2016
Virus Attracts Bumblebees to Infected Plants by Changing Scent
Study of bee-manipulating plant virus reveals that replicating the scent caused by infection could encourage declining bee populations to pollinate crops.
Friday, August 12, 2016
Newly-discovered Mechanism Influences How Immune Cells ‘Eat’ Invading Bacteria
A new mechanism that affects how our immune cells perform – and hence their ability to prevent disease – has been discovered by an international team of researchers led by Cambridge scientists.
Wednesday, August 03, 2016
Cellular Origin of Skin Cancer Identified
Scientists have identified ‘cell of origin’ in the most common form of skin cancer, and followed the process that leads to tumour growth.
Tuesday, July 12, 2016
Identifying Side-Effects At Early Stages Of Drug Development
An approach that could reduce the chances of drugs failing during the later stages of clinical trials has been demonstrated by a collaboration between the University of Cambridge and pharmaceutical company GlaxoSmithKline (GSK).
Friday, June 03, 2016
A Shaggy Dog Story: The Contagious Cancer That Conquered The World
A contagious form of cancer that can spread between dogs during mating has highlighted the extent to which dogs accompanied human travellers throughout our seafaring history. But the tumours also provide surprising insights into how cancers evolve by ‘stealing’ DNA from their host.
Wednesday, May 18, 2016
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Wednesday, May 04, 2016
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Wednesday, May 04, 2016
Limbs May Have Evolved From Sharks’ Gills
Latest analysis shows that human limbs share a genetic programme with the gills of cartilaginous fishes such as sharks and skates, providing evidence to support a century-old theory on the origin of limbs that had been widely discounted.
Wednesday, April 20, 2016
Very Early Stage Human Stem Cell Lines Developed
Scientists at the University of Cambridge have for the first time shown that it is possible to derive from a human embryo so-called ‘naïve’ pluripotent stem cells – one of the most flexible types of stem cell, which can develop into all human tissue other than the placenta.
Monday, March 14, 2016
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Friday, February 12, 2016
Stem Cells Likely to be Safe for Use in Regenerative Medicine
Cambridge researchers have found the strongest evidence to date that human pluripotent stem cells – cells that can give rise to all tissues of the body – will develop normally once transplanted into an embryo.
Monday, December 21, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Sweet Tooth Science - Chocolate Antioxidants
Researchers develop a faster and cheaper method to test for antioxidants in chocolate.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!