Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Seed Size is Controlled by Maternally Produced Small RNAs, Scientists Find

Published: Thursday, April 12, 2012
Last Updated: Thursday, April 12, 2012
Bookmark and Share
Seed size is controlled by maternally produced small RNAs, scientists find.

The University of Texas at Austin discovery has implications for agriculture and understanding plant evolution.

"Crop seeds provide nearly 70 to 80 percent of calories and 60 to 70 percent of all proteins consumed by the human population," said Z. Jeff Chen, the D.J. Sibley Centennial Professor in Plant Molecular Genetics at The University of Texas at Austin. "Seed production is obviously very important for agriculture and plant evolution."

Chen and his colleagues, including David Baulcombe at the University of Cambridge, provide the first genetic evidence that seed development is controlled by maternally inherited "small interfering RNAs," or siRNAs.

They published their research April 3 in the journal PNAS.

SiRNAs are known to control a number of aspects of growth and development in plants and animals. The researchers used Arabidopsis, a rapidly growing flowering plant in the mustard family, for the study.

In this case, the researchers found that the siRNAs influence the development of a seed's endosperm, which is the part of the seed that provides nutrients to the developing plant embryo, much like the placenta in mammals. The endosperm is also the source for most of the nutritional content of the seed for humans and animals.

Despite the importance of the endosperm, little has been known about the molecular mechanisms that govern its growth.

In flowering plant seeds, the embryo is formed by fusion of one paternal and one maternal genome, while the endosperm combines one paternal and two maternal genomes. This process of embryo and endosperm formation is known as "double fertilization."

The scientists found that when a female plant with a duplicate genome (known as a tetraploid) is crossed with a male plant with a normal genome (called a diploid), not only is there an increase in the maternal genome in their offspring's seed endosperm, but there is also an associated increase in maternal siRNAs.

Those maternal siRNAs decrease the expression of genes that lead to larger endosperm growth, meaning that the siRNAs create smaller seeds.

"Now we understand that siRNAs play a large role in sensing maternal and paternal genome imbalance and controlling seed development, and that maternal control is important," said Chen.

The researchers are working to find out how exactly siRNAs regulate gene expression in the endosperm and embryo and how they control seed size. These new findings will enable scientists to develop biotechnological tools for improving seed production and crop yield.

But Chen cautioned that "bigger isn't always better." In fact, in his experiments, seeds lacking the control of the maternally inherited siRNAs grew so large that they collapsed.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Thursday, July 23, 2015
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Monday, July 20, 2015
Partly Human Yeast Show A Common Ancestor’s Lasting Legacy
Edward Marcotte and his colleagues at the University of Texas at Austin created hundreds of strains of humanized yeast by inserting into each a single human gene and turning off the corresponding yeast gene.
Tuesday, May 26, 2015
Cancer-Causing Virus Blocks Human Immune Response
Epstein-Barr virus shown to outwit the human immune response using microRNAs.
Wednesday, January 28, 2015
Researchers Reveal Genomic Diversity Of Individual Lung Tumors
Findings suggest sequencing a single region of a localized tumor will identify driver mutations.
Friday, October 10, 2014
How Fluid Flow Influences Neuron Growth
A University of Texas at Arlington team exploring how neuron growth can be controlled in the lab and, possibly, in the human body has published a new paper in Nature Scientific Reports on how fluid flow could play a significant role.
Wednesday, October 08, 2014
3-in-1 Spectroscopy System Improves Skin Cancer Detection
The new device may detect cancerous skin lesions early on, leading to better treatment outcomes and ultimately saving lives.
Thursday, August 07, 2014
Method Developed at UT Arlington Allows Quantitative Nanoscopic Imaging Through Silicon
A team of scientists has figured out how to quantitatively observe cellular processes taking place on so-called “lab on a chip” devices in a silicon environment.
Monday, October 07, 2013
Chlamydia Protein has an Odd Structure
Research could lead to new ways to combat this sexually transmitted disease.
Thursday, June 13, 2013
Researchers Reveal New Enzyme that Acts as Innate Immunity Sensor
Two studies by researchers at UT Southwestern Medical Center could lead to new treatments for lupus and other autoimmune diseases and strengthen current therapies for viral, bacterial, and parasitic infections.
Monday, February 18, 2013
Unique Peptide Could Treat Cancers, Neurological Disorders, Infectious Diseases
Scientists have synthesized a peptide that shows potential for pharmaceutical development through an ability to induce a cell-recycling process called autophagy.
Monday, February 18, 2013
Designer Bacteria May Lead to Better Vaccines
Researchers have developed a menu of 61 new strains of genetically engineered bacteria that may improve the efficacy of vaccines for diseases such as flu, pertussis, cholera and HPV.
Wednesday, January 23, 2013
Biologists Unlocking the Secrets of Plant Defenses, One Piece at a Time
Researchers examining how the hormone jasmonate works to protect plants and promote their growth have revealed how a transcriptional repressor of the jasmonate signaling pathway makes its way into the nucleus of the plant cell.
Thursday, December 13, 2012
Metabolic Protein Launches Sugar Feast that Nurtures Brain Tumors
PKM2 slips into nucleus to promote cancer; potential biomarker and drug approach discovered.
Wednesday, November 28, 2012
Ancient Enzymes Function like Nanopistons to Unwind RNA
Molecular biologists have solved one of the mysteries of how double-stranded RNA is remodeled inside cells in both their normal and disease states.
Wednesday, September 05, 2012
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!