Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Turn Big Data Problems into Advanced Biology and Drug Discoveries

Published: Thursday, April 26, 2012
Last Updated: Thursday, April 26, 2012
Bookmark and Share
University of Illinois at Chicago and The Genome Analysis Centre in Norwich, UK leverage SGI(R) UV(TM) to accelerate drug discovery and complex problem analysis.

SGI announced that researchers in the compute-intensive field of biotechnology research are continuing to make breakthrough progress with their selection of the SGI(R) UV(TM) high performance computing (HPC) system. SGI UV is the leading scalable shared memory architecture in the industry today, and is being deployed to tackle many of the world's most difficult and complex compute challenges. The Center for Pharmaceutical Biotechnology, University of Illinois at Chicago (UIC) and The Genome Analysis Centre (TGAC) in the UK are two examples.

Researchers at the Center for Pharmaceutical Biotechnology at UIC are working on the development of new therapeutics focused on the treatment of infectious diseases, critical with the advent of new resistant bacterial strains and ineffective treatments for many diseases. The discovery of novel chemical compounds that form the basis for the development of molecular scaffolds of new antimicrobials is a daunting task. One promising approach is the use of diverse chemical compound libraries--thousands of chemical compounds--that are tested against unique targets to find effective inhibitors of bacterial growth. The approach is promising, but can be extremely time-consuming, expensive and resource-intensive.

A parallel approach is the virtual screening of chemical compounds against these unique targets since their three-dimensional structures have been determined. After a virtual library of molecules is screened, they are ranked. Literally millions of molecules can be screened in this fashion, and used to generate a smaller library of molecules for testing. This virtual--or in silico--screening requires the use of hundreds of processors working in parallel to screen millions of compounds in a timely manner.

"Researchers at the Center have been using SGI IRIX(R) OS-based clusters for the past decade, and have now migrated to an SGI UV high performance compute solution powered by large arrays of Intel(R) Xeon(R) series processors and NVIDIA(R) Tesla(R) series GPUs," said Michael E. Johnson, professor and director emeritus at the Center for Pharmaceutical Biotechnology at UIC. "These clusters provide computing flexibility in managing both serial and parallel calculations, and the forward compatibility of SGI systems have allowed us to seamlessly evolve and expand our computing power through the years and keep up with the increasing complexity of the problems we need to address."

In the UK, TGAC specializes in genomics and bioinformatics with a focus on the analysis and interpretation of plant, animal and microbial genomes. Launched in July 2009, TGAC has steadily grown its team to over 50 members, with half of the institute working in a bioinformatics capacity to interpret, assemble and analyze datasets generated from the sequencers housed in their lab. Located on the Norwich Research Park in Norwich, UK, TGAC receives strategic funding from the UK's Biotechnology and Biological Sciences Research Council (BBSRC).

"SGI UV was chosen because of the product's superior performance and scalability, reflecting the company's support and experience in high-end, high performance computing," said Paul Fretter, science computing team leader at the Norwich Bioscience Institutes. "The main benefit of using such a system is the ability to assemble and analyze large and complex multi-billion base genome sequences in memory."

TGAC researchers have been using an SGI UV 100 since early 2011. SGI Professional Services was involved in helping the centre drive the implementation of fusion_IO SSD and the integration of NVIDIA Tesla GPUs. At the time of installation, this was the world's largest Red Hat(R) Enterprise Linux(R) 6 system. The centre is also due to receive the world's largest shared memory system for genome research when it initiates service of the future generation SGI UV system powered by Intel(R) MIC series processors.

"The SGI UV family is quickly becoming the de facto industry standard for customers tackling some of the world's most complex big data challenges in the field of life sciences," said Rick Rinehart, senior vice president of services at SGI. "The versatility, flexibility and scalability of the UV system make it the proper foundation for a complete compute and storage solution for these massive data intensive challenges."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!