Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Scripps Research Institute Scientists Find the Structure of a Key ‘Gene Silencer’ Protein

Published: Monday, April 30, 2012
Last Updated: Monday, April 30, 2012
Bookmark and Share
The structure reveals potential therapeutic targets in area with ‘untapped potential’.

Scientists at The Scripps Research Institute have determined the three-dimensional atomic structure of a human protein that is centrally involved in regulating the activities of cells. Knowing the precise structure of this protein paves the way for scientists to understand a process known as RNA-silencing and to harness it to treat diseases.

“Biologists have known about RNA-silencing for only a decade or so, but it’s already clear that there’s an enormous untapped potential here for new therapies,” said Ian MacRae, an assistant professor at Scripps Research and senior author of the new report.

The new report, which appeared on April 26, 2012 in the journal Science’s advance online publication, Science Express, focuses on Argonaute2. This protein can effectively “silence” a gene by intercepting and slicing the gene’s RNA transcripts before they are translated into working proteins.

Interception and Destruction of Messages

When a gene that codes for a protein is active in a cell, its information is transcribed from DNA form into lengths of nucleic acid called messenger RNA (mRNA). If all goes well, these coded mRNA signals make their way to the cell’s protein-factories, which use them as templates to synthesize new proteins. RNA-silencing, also called RNA interference (RNAi), is the interception and destruction of these messages—and as such, is a powerful and specific regulator of cell activity, as well as a strong defender against viral genes.

The silencing process requires not only an Argonaute protein but also a small length of guide RNA, known as a short-interfering RNA or microRNA. The guide RNA fits into a slot on Argonaute and serves as a target recognition device. Like a coded strip of VelcroTM, it latches onto a specific mRNA target whose sequence is the chemical mirror image, or “complement,” of its own—thus bringing Argonaute into contact with its doomed prey.

Argonaute2 is not the only type of human Argonaute protein, but it seems to be the only one capable of destroying target RNA directly. “If the guide RNA is completely complementary to the target RNA, Argonaute2 will cleave the mRNA, and that will elicit the degradation of the fragments and the loss of the genetic message,” said Nicole Schirle, the graduate student in MacRae’s laboratory who was lead author of the paper.

Aimed at disease-causing genes or even a cell’s own overactive guide RNAs, RNA-silencing could be a powerful therapeutic weapon. In principle, one needs only to inject target-specific guide RNAs, and these will link up with Argonaute proteins in cells to find and destroy the target RNAs. Scientists have managed to do this successfully with relatively accessible target cells, such as in the eye. But they have found it difficult to develop guide RNAs that can get from the bloodstream into distant tissues and still function.

“You have to modify the guide RNA, in some way to get it through the blood and into cells, but as soon as you start modifying it, you disrupt its ability to interact with Argonaute,” said MacRae. Knowing the precise structure of Argonaute should enable researchers to clear this hurdle by designing better guide RNA.

More Points for Manipulation

Previous structural studies have focused mostly on Argonaute proteins from bacteria and other lower organisms, which have key differences from their human counterparts. Schirle was able to produce the comparatively large and complex human Argonaute2 and to manipulate it into forming crystals for X-ray crystallography analysis—a feat that structural biologists have wanted to achieve for much of the past decade. “It was just excellent and diligent crystallography on her part,” said MacRae.

The team’s analysis of Argonaute2’s structure revealed that it has the same basic set of working parts as bacterial Argonaute proteins, except that they are arranged somewhat differently. Also, key parts of Argonaute2 have extra loops and other structures, not seen on bacterial versions, which may play roles in binding to guide RNA. Finally, Argonaute2 has what appear to be binding sites for additional co-factor proteins that are thought to perform other destructive operations on the target mRNA.

“Basically, this Argonaute protein is more sophisticated than its bacterial cousins; it has more bells and whistles, which give us more points for manipulation. With this structure solved, we no longer need to use the prokaryotic structures to guess at what human Argonaute proteins look like,” MacRae said.
He and Schirle and others in the lab now are analyzing the functions of Argonaute2’s substructures, as well as looking for ways to design better therapeutic guide RNAs.

“Now with the structural data, we can see what synthetic guide RNAs will work with Argonaute and what won’t,” MacRae said. “We might even be able to make guide RNAs that can outcompete natural ones.”
The research that led to Schirle and MacRae’s new paper, “The Crystal Structure of Human Argonaute2,” was funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
Thursday, August 06, 2015
New Antibody Weapons Against Marburg Virus
A study has identified new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus.
Tuesday, June 30, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
New Details of Potential Alzheimer’s Treatment Uncovered
Scientists from Florida’s Scripps Resarch Institute have uncovered suprising new details of potential Alzheimer’s treatment.
Wednesday, April 29, 2015
Search for Cancer Drug Candidates
Scripps Florida scientists awarded $1.2 million to find drug candidates that could treat a wide range of cancers.
Friday, April 10, 2015
Scripps Florida Scientists Win $1.5 Million Grant to Develop New Cancer Drugs
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded a $1.5 million grant from the National Institutes of Health (NIH) to develop drug candidates that could treat cancer and neurodegenerative disease.
Tuesday, March 24, 2015
Day-Night Cycles Linked to Mutations
TSRI scientists show that proteins critical in day-night cycles also protect cells from mutations.
Friday, March 13, 2015
More DNA & Extra Copies of Disease Gene in Alzheimer’s Brain Cells
Scientists at The Scripps Research Institute (TSRI) have found diverse genomic changes in single neurons from the brains of Alzheimer’s patients, pointing to an unexpected factor that may underpin the most common form of the disease.
Tuesday, February 24, 2015
Possible Neuron Killing Mechanism Behind Alzheimer’s and Parkinson’s Diseases Discovered
$1.4 million grant will enable team to follow up with search for drug candidates.
Tuesday, February 17, 2015
Microbes Prevent Malnutrition in Fruit Flies—and Maybe Humans, Too
Study shows that microbes play a critical role in nutritional disorders.
Friday, February 13, 2015
New Targets and Test to Develop Treatments for Memory Disorders
The study focuses on kinesin, a molecular motor protein that plays a role in the transport of other proteins throughout a cell.
Thursday, November 13, 2014
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos